Skip to content
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
Show all changes
53 commits
Select commit Hold shift + click to select a range
ad2b8d5
wip
oleksost Feb 18, 2025
5dbc72a
wip
oleksost Mar 13, 2025
5213e9e
WIP
oleksost Mar 14, 2025
01d0fe4
mamba1 block
oleksost Mar 20, 2025
ae8f3ca
removed build from remote
oleksost Mar 20, 2025
fa6d3bc
removed unneccesary tests
oleksost Mar 20, 2025
963e674
removed unneccesary files
oleksost Mar 20, 2025
0842fcb
test
oleksost Mar 20, 2025
1c81719
test mamba1
oleksost Mar 24, 2025
37ba0d5
tensor dimentions
oleksost Mar 24, 2025
11a5db3
meta init with full model run
oleksost Mar 24, 2025
4af7eb7
training, but having backward issues
oleksost Mar 25, 2025
be93749
integration into training pipeline
oleksost Mar 30, 2025
dd469bc
mamba2
oleksost Mar 31, 2025
ebe1b75
renamed config + skip test
oleksost Mar 31, 2025
a4400fd
skip tests if mamba not installed
oleksost Mar 31, 2025
c49148c
pre-commits
oleksost Mar 31, 2025
5c8d930
cleanup
oleksost Mar 31, 2025
ef6791b
dependencies
oleksost Mar 31, 2025
f03dd10
descrete mamba2
oleksost Mar 31, 2025
2414252
Merge branch 'ssm_mamba2' into ssm
oleksost Mar 31, 2025
f4d411d
test
oleksost Mar 31, 2025
ee86c68
llamba checkpoint converter
oleksost Apr 3, 2025
2561738
cleanup
oleksost Apr 4, 2025
ad8a48c
test
oleksost Apr 4, 2025
5243a88
Merge branch 'main' into ssm
oleksost Apr 4, 2025
075a31f
mamba force build
oleksost Apr 7, 2025
a788989
mamba force build
oleksost Apr 7, 2025
2700660
mamba force build
oleksost Apr 7, 2025
baaf714
causal conv skip build
oleksost Apr 7, 2025
833b586
Merge branch 'main' into ssm
oleksost Apr 7, 2025
9e2897d
docs.yaml
oleksost Apr 7, 2025
b231cb8
MTP hardcoded
oleksost Apr 7, 2025
8ccaa28
import nvm
oleksost Apr 7, 2025
864fff2
remove dependency on cartesia
oleksost Apr 7, 2025
7f2b35f
save llamba
oleksost Apr 7, 2025
81c71af
addressed comments
oleksost Apr 8, 2025
7b7ce62
addressed comments
oleksost Apr 9, 2025
776e67b
Merge branch 'main' into ssm
oleksost Apr 9, 2025
3456884
nvm
oleksost Apr 10, 2025
b48f68d
renamed block pattern into block layout
oleksost Apr 11, 2025
9a35783
renames
oleksost Apr 11, 2025
32b8aa1
nvm
oleksost Apr 14, 2025
4f9aad0
wip
oleksost Apr 16, 2025
68de5d1
addressed comments
oleksost Apr 23, 2025
ebc516a
Merge branch 'main' into ssm
oleksost Apr 23, 2025
cb95e52
wip
oleksost Apr 23, 2025
79c9a4b
batch config
oleksost Apr 23, 2025
bb3ba66
clean up
oleksost Apr 23, 2025
a5297be
nvm
oleksost Apr 23, 2025
2d39857
tests
oleksost Apr 23, 2025
df032b5
nvm
oleksost Apr 23, 2025
c8fdbb9
identity activation into MLP
oleksost Apr 23, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 147 additions & 0 deletions fast_llm/layers/common/conv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import logging
import typing

import torch

from fast_llm.engine.config_utils.tensor_space import TensorDim
from fast_llm.tensor import ParameterMeta, init_zeros_

logger = logging.getLogger(__name__)


class Conv1DBase(torch.nn.Module):
"""
A base module for 1D convolutional layers holding weights and biases.
"""

def __init__(
self,
in_channels: TensorDim,
out_channels: TensorDim,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
*,
bias=True,
weight_init_method,
bias_init_method=init_zeros_,
auto_bias_grad_accumulation: bool = False,
lr_scale: float | None | tuple[float | None, ...] = None,
):
super().__init__()
self._in_channels = in_channels
self._out_channels = out_channels
self._kernel_size = kernel_size
self._stride = stride
self._padding = padding
self._dilation = dilation
self._groups = groups

self.weight = ParameterMeta.from_dims(
(self._out_channels, TensorDim("D_in", self._in_channels.size // groups), TensorDim("D_kernel", self._kernel_size)),
init_method=weight_init_method,
auto_grad_accumulation=False,
lr_scale=lr_scale,
)

if bias:
self.bias = ParameterMeta.from_dims(
(self._out_channels,),
init_method=bias_init_method,
weight_decay=False,
auto_grad_accumulation=auto_bias_grad_accumulation,
lr_scale=lr_scale,
)
else:
self.bias = None


class Conv1D(Conv1DBase):
"""
A basic 1D convolutional layer without tensor parallelism.
"""

def __init__(
self,
in_channels: TensorDim,
out_channels: TensorDim,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
*,
bias=True,
weight_init_method,
bias_init_method=init_zeros_,
lr_scale: float | None | tuple[float | None, ...] = None,
):
assert in_channels.parallel_dim is None
assert out_channels.parallel_dim is None
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias=bias,
weight_init_method=weight_init_method,
bias_init_method=bias_init_method,
lr_scale=lr_scale,
)

def forward(self, input_: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.conv1d(
input_,
self.weight,
self.bias,
stride=self._stride,
padding=self._padding,
dilation=self._dilation,
groups=self._groups,
)

def forward_only(
self, input_: torch.Tensor
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor, dict]]:
# Store context for backward pass
context = {
"input": input_,
"weight": self.weight,
"stride": self._stride,
"padding": self._padding,
"dilation": self._dilation,
"groups": self._groups,
}

output = torch.nn.functional.conv1d(
input_,
self.weight,
self.bias,
stride=self._stride,
padding=self._padding,
dilation=self._dilation,
groups=self._groups,
)

return output, (input_, self.weight, context)

def backward(self, grad_output: torch.Tensor, context: tuple[torch.Tensor, torch.Tensor, dict]) -> torch.Tensor:
input_, weight, ctx = context

# Calculate gradients
grad_input = torch.nn.grad.conv1d_input(
input_.shape,
weight,
grad_output,
stride=ctx["stride"],
padding=ctx["padding"],
dilation=ctx["dilation"],
groups=ctx["groups"],
)

return grad_input
175 changes: 175 additions & 0 deletions fast_llm/layers/ssm/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
import math
from typing import Optional

from fast_llm.config import Field, FieldHint, FieldUpdate, check_field, config_class, skip_valid_if_none
from fast_llm.engine.base_model.config import BaseModelConfig
from fast_llm.layers.common.config import NormalizationConfig
from fast_llm.layers.transformer.config import TransformerArchitectureConfig
from fast_llm.utils import Assert

@config_class()
class MambaConfig(TransformerArchitectureConfig, BaseModelConfig):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We'll need a proper architecture/non-architecture split for things to work properly.

"""Configuration for a Structured State Space Model (SSM) layer."""

# Core architecture parameters
hidden_size: int = Field(
default=768,
desc="Size of the hidden representations",
hint=FieldHint.core,
valid=check_field(Assert.gt, 0),
)

state_size: int = Field(
default=64,
desc="Size of the internal state vector",
hint=FieldHint.core,
valid=check_field(Assert.gt, 0),
)

expansion_factor: int = Field(
default=2,
desc="Factor by which to expand hidden size in SSM computation",
hint=FieldHint.core,
valid=check_field(Assert.gt, 0),
)

# SSM specific parameters
conv_dimension: int = Field(
default=4,
desc="Size of the convolutional kernel",
hint=FieldHint.core,
valid=check_field(Assert.gt, 0),
)

dt_rank: str | int = Field(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please use None for derived defaults. dt_rank: int = Field(default=None, ...

default="auto",
desc="Rank of the Ξ” projection matrix. If 'auto', set to ceil(hidden_size/16)",
hint=FieldHint.core,
)

dt_min: float = Field(
default=0.001,
desc="Minimum step size for discretization",
hint=FieldHint.core,
valid=check_field(Assert.gt, 0),
)

dt_max: float = Field(
default=0.1,
desc="Maximum step size for discretization",
hint=FieldHint.core,
valid=check_field(Assert.gt, 0),
)

dt_init_floor: float = Field(
default=1e-4,
desc="Minimum value for initializing dt",
hint=FieldHint.core,
valid=check_field(Assert.gt, 0),
)

# Layer parameters
add_bias_linear: bool = Field(
default=False,
desc="Whether to use bias in linear transformations",
hint=FieldHint.core,
)

conv_bias: bool = Field(
default=True,
desc="Whether to use bias in convolution layer",
hint=FieldHint.core,
)

# Normalization
normalization: NormalizationConfig = FieldUpdate(
default_factory=NormalizationConfig
)

# Performance optimization
use_fast_path: bool = Field(
default=True,
desc="Whether to use optimized CUDA kernels when available",
hint=FieldHint.performance,
)

# Initialization parameters
init_method_std: float = Field(
default=None,
desc="Default scale for weight initialization. Default: hidden_size**-0.5",
hint=FieldHint.optional,
valid=skip_valid_if_none(check_field(Assert.geq, 0)),
)


device: str = Field(
default="cuda",
desc="device",
hint=FieldHint.optional,
)

mamba_headdim: int = Field(
default=64,
desc="headdim",
hint=FieldHint.optional,
)
mamba_ngroups: int = Field(
default=1,
desc="ngroups",
hint=FieldHint.optional,
)

use_low_rank_mamba_proj: bool = Field(
default=False,
desc="use_low_rank_mamba_proj",
hint=FieldHint.optional,
)

use_module_layernorm: bool = Field(
default=False,
desc="use_module_layernorm",
hint=FieldHint.optional,
)

layernorm_epsilon: float = Field(
default=1e-5,
desc="layernorm_epsilon",
hint=FieldHint.optional,
)

rms_norm: bool = Field(
default=False,
desc="rms_norm",
hint=FieldHint.optional,
)

fused_add_norm: bool = Field(
default=False,
desc="fused_add_norm",
hint=FieldHint.optional,
)

residual_in_fp32: bool = Field(
default=False,
desc="residual_in_fp32",
hint=FieldHint.optional,
)

def _validate(self) -> None:
"""Validate configuration parameters."""
if self.init_method_std is None:
self.init_method_std = self.hidden_size**-0.5

super()._validate()

# Validate SSM-specific parameters
Assert.gt(self.state_size, 0)
Assert.gt(self.expansion_factor, 0)
Assert.gt(self.conv_dimension, 0)
Assert.gt(self.dt_min, 0)
Assert.gt(self.dt_max, 0)
Assert.gt(self.dt_init_floor, 0)
Assert.geq(self.dt_max, self.dt_min)

if isinstance(self.dt_rank, int):
Assert.gt(self.dt_rank, 0)
Loading
Loading