You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
:::{.theorem #factor_score_estimation, name="Quantum factor score ratio estimation"}
43
+
:::{.theorem #factor_score_estimation name="Quantum factor score ratio estimation"}
44
44
Assume to have quantum access to a matrix $A \in \R^{n \times m}$ and $\sigma_{max} \leq 1$.
45
45
Let $\gamma, \epsilon$ be precision parameters. There exists a quantum algorithm that, in time $\widetilde{O}\left(\frac{1}{\gamma^2}\frac{\mu(A)}{\epsilon}\right)$, estimates:
46
46
@@ -60,14 +60,14 @@ Often in data representations, the cumulative sum of the factor score ratios is
60
60
61
61
However, a slight variation of the algorithm of Theorem \@ref(thm:spectral-norm-estimation) provides a more accurate estimation in less time, given a threshold $\theta$ for the smallest singular value to retain.
62
62
63
-
:::{.theorem #check_explained_variance, name="Quantum check on the factor score ratios' sum"}
63
+
:::{.theorem #check_explained_variance name="Quantum check on the factor score ratios' sum"}
64
64
Assume to have efficient quantum access to the matrix $A \in \R^{n \times m}$, with singular value decomposition $A = \sum_i\sigma_i u_i v_i^T$. Let $\eta, \epsilon$ be precision parameters and $\theta$ be a threshold for the smallest singular value to consider.
65
65
There exists a quantum algorithm that estimates $p = \frac{\sum_{i: \overline{\sigma}_i \geq \theta} \sigma_i^2}{\sum_j^r \sigma_j^2}$, where $\|\sigma_i - \overline{\sigma}_i\| \leq \epsilon$, to relative error $\eta$ in time $\widetilde{O}\left(\frac{\mu(A)}{\epsilon}\frac{1}{\eta \sqrt{p}}\right)$.
66
66
:::
67
67
68
68
Moreover, we borrow an observation from [@kerenidis2017quantumsquares] on Theorem \@ref(thm:spectral-norm-estimation), to perform a binary search of $\theta$ given the desired sum of factor score ratios.
69
69
70
-
:::{.theorem #binarysearch-for-threshold name="Quantum binary search for the singular value threshold"}
70
+
:::{.theorem #binarysearch-for-threshold name="Quantum binary search for the singular value threshold"}
71
71
Assume to have quantum access to the matrix $A \in \R^{n \times m}$. Let $p$ be the factor ratios sum to retain. The threshold $\theta$ for the smallest singular value to retain can be estimated to absolute error $\epsilon$ in time $\widetilde{O}\left(\frac{\log(1/\epsilon)\mu(A)}{\epsilon\sqrt{p}}\right)$.
0 commit comments