Skip to content

Commit 7aefce2

Browse files
committed
change De Wolf in de Wolf, clarify sentence on classical mechanics
1 parent 5eacdcf commit 7aefce2

File tree

3 files changed

+13
-13
lines changed

3 files changed

+13
-13
lines changed

book.bib

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -228,7 +228,7 @@ @article{nannicini2019fast
228228
}
229229
@article{van2020quantum,
230230
title = {Quantum SDP-solvers: Better upper and lower bounds},
231-
author = {Van Apeldoorn, Joran and Gily{\'e}n, Andr{\'a}s and Gribling, Sander and de Wolf, Ronald},
231+
author = {van Apeldoorn, Joran and Gily{\'e}n, Andr{\'a}s and Gribling, Sander and de Wolf, Ronald},
232232
year = 2020,
233233
journal = {Quantum},
234234
publisher = {Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften},
@@ -302,7 +302,7 @@ @article{liu1995ml
302302
}
303303
@article{buhrman2001quantum,
304304
title = {Quantum fingerprinting},
305-
author = {Buhrman, Harry and Cleve, Richard and Watrous, John and De Wolf, Ronald},
305+
author = {Buhrman, Harry and Cleve, Richard and Watrous, John and de Wolf, Ronald},
306306
year = 2001,
307307
journal = {Physical Review Letters},
308308
publisher = {APS},
@@ -2949,7 +2949,7 @@ @inproceedings{kapoor2016quantum
29492949
}
29502950
@article{DeWolf,
29512951
title = {Quantum computing: Lecture notes},
2952-
author = {De Wolf, Ronald},
2952+
author = {de Wolf, Ronald},
29532953
year = 2019,
29542954
journal = {arXiv:1907.09415},
29552955
}
@@ -3159,7 +3159,7 @@ @article{Marsden
31593159
}
31603160
@article{Arunachalam2016,
31613161
title = {{Optimal Quantum Sample Complexity of Learning Algorithms}},
3162-
author = {Arunachalam, Srinivasan and De Wolf, Ronald},
3162+
author = {Arunachalam, Srinivasan and de Wolf, Ronald},
31633163
year = 2016,
31643164
arxivid = {arXiv:1607.00932v2},
31653165
}
@@ -3246,7 +3246,7 @@ @article{Fernando
32463246
}
32473247
@article{DeWolf2008,
32483248
title = {{A Brief Introduction to Fourier Analysis on the Boolean Cube}},
3249-
author = {De Wolf, Ronald},
3249+
author = {de Wolf, Ronald},
32503250
year = 2008,
32513251
pages = {1--20},
32523252
doi = {10.4086/toc.gs.2008.001},
@@ -4416,7 +4416,7 @@ @article{Mukund1996
44164416
}
44174417
@article{Cirasella2006,
44184418
title = {{Classical and Quantum Algorithms for Finding Cycles MSc in Logic}},
4419-
author = {Cirasella, Jill and Buhrman, Harry and L{\"{o}}we, Benedikt and De Wolf, Ronald},
4419+
author = {Cirasella, Jill and Buhrman, Harry and L{\"{o}}we, Benedikt and de Wolf, Ronald},
44204420
year = 2006,
44214421
}
44224422
@article{Magniez2005,
@@ -5361,7 +5361,7 @@ @inproceedings{belovs2012span
53615361
}
53625362
@inproceedings{buhrman1999bounds,
53635363
title = {Bounds for small-error and zero-error quantum algorithms},
5364-
author = {Buhrman, Harry and Cleve, Richard and De Wolf, Ronald and Zalka, Christof},
5364+
author = {Buhrman, Harry and Cleve, Richard and de Wolf, Ronald and Zalka, Christof},
53655365
year = 1999,
53665366
booktitle = {40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039)},
53675367
pages = {358--368},

intro.Rmd

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -33,9 +33,9 @@ there.
3333

3434
When, at the beginning of the 20th century, physicists started to model
3535
quantum phenomena, they observed that the dynamic of the systems had two
36-
properties: they observed that the time and space evolution of quantum
37-
systems is continuous (as in classical mechanics) and reversible (unlike
38-
the classical world). They decided to formalize this concept as follows.
36+
properties: the time and space evolution of quantum
37+
systems is continuous and reversible (as in classical mechanics).
38+
They decided to formalize this concept as follows.
3939
First, they decided to model the state of a quantum system at time $p$
4040
as a function $\psi(p)$, and they decided to model the evolution of
4141
$\psi(p)$ for time $t$ as an operator $U(t)$ acting on $\psi(p)$s.

sve-based-quantum-algorithms.Rmd

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ knitr::include_graphics("algpseudocode/q-factor-score-ratio-estimation.png")
4040

4141

4242

43-
:::{.theorem #factor_score_estimation, name="Quantum factor score ratio estimation"}
43+
:::{.theorem #factor_score_estimation name="Quantum factor score ratio estimation"}
4444
Assume to have quantum access to a matrix $A \in \R^{n \times m}$ and $\sigma_{max} \leq 1$.
4545
Let $\gamma, \epsilon$ be precision parameters. There exists a quantum algorithm that, in time $\widetilde{O}\left(\frac{1}{\gamma^2}\frac{\mu(A)}{\epsilon}\right)$, estimates:
4646

@@ -60,14 +60,14 @@ Often in data representations, the cumulative sum of the factor score ratios is
6060

6161
However, a slight variation of the algorithm of Theorem \@ref(thm:spectral-norm-estimation) provides a more accurate estimation in less time, given a threshold $\theta$ for the smallest singular value to retain.
6262

63-
:::{.theorem #check_explained_variance, name="Quantum check on the factor score ratios' sum"}
63+
:::{.theorem #check_explained_variance name="Quantum check on the factor score ratios' sum"}
6464
Assume to have efficient quantum access to the matrix $A \in \R^{n \times m}$, with singular value decomposition $A = \sum_i\sigma_i u_i v_i^T$. Let $\eta, \epsilon$ be precision parameters and $\theta$ be a threshold for the smallest singular value to consider.
6565
There exists a quantum algorithm that estimates $p = \frac{\sum_{i: \overline{\sigma}_i \geq \theta} \sigma_i^2}{\sum_j^r \sigma_j^2}$, where $\|\sigma_i - \overline{\sigma}_i\| \leq \epsilon$, to relative error $\eta$ in time $\widetilde{O}\left(\frac{\mu(A)}{\epsilon}\frac{1}{\eta \sqrt{p}}\right)$.
6666
:::
6767

6868
Moreover, we borrow an observation from [@kerenidis2017quantumsquares] on Theorem \@ref(thm:spectral-norm-estimation), to perform a binary search of $\theta$ given the desired sum of factor score ratios.
6969

70-
:::{. theorem #binarysearch-for-threshold name="Quantum binary search for the singular value threshold"}
70+
:::{.theorem #binarysearch-for-threshold name="Quantum binary search for the singular value threshold"}
7171
Assume to have quantum access to the matrix $A \in \R^{n \times m}$. Let $p$ be the factor ratios sum to retain. The threshold $\theta$ for the smallest singular value to retain can be estimated to absolute error $\epsilon$ in time $\widetilde{O}\left(\frac{\log(1/\epsilon)\mu(A)}{\epsilon\sqrt{p}}\right)$.
7272
:::
7373

0 commit comments

Comments
 (0)