|
| 1 | +using Microsoft.VisualStudio.TestTools.UnitTesting; |
| 2 | +using NumSharp; |
| 3 | +using Tensorflow; |
| 4 | +using static Tensorflow.KerasApi; |
| 5 | + |
| 6 | +namespace TensorFlowNET.Keras.UnitTest |
| 7 | +{ |
| 8 | + [TestClass] |
| 9 | + public class LayersConvolutionTest : EagerModeTestBase |
| 10 | + { |
| 11 | + [TestMethod] |
| 12 | + public void BasicConv2D() |
| 13 | + { |
| 14 | + var filters = 8; |
| 15 | + var conv = keras.layers.Conv2D(filters); |
| 16 | + |
| 17 | + var x = np.arange(256.0f).reshape(1,8,8,4); |
| 18 | + var y = conv.Apply(x); |
| 19 | + |
| 20 | + Assert.AreEqual(4, y.shape.ndim); |
| 21 | + Assert.AreEqual(x.shape[0], y.shape[0]); |
| 22 | + Assert.AreEqual(x.shape[1] - 4, y.shape[1]); |
| 23 | + Assert.AreEqual(x.shape[2] - 4, y.shape[2]); |
| 24 | + Assert.AreEqual(filters, y.shape[3]); |
| 25 | + } |
| 26 | + |
| 27 | + [TestMethod] |
| 28 | + public void BasicConv2D_ksize() |
| 29 | + { |
| 30 | + var filters = 8; |
| 31 | + var conv = keras.layers.Conv2D(filters, kernel_size: 3); |
| 32 | + |
| 33 | + var x = np.arange(256.0f).reshape(1, 8, 8, 4); |
| 34 | + var y = conv.Apply(x); |
| 35 | + |
| 36 | + Assert.AreEqual(4, y.shape.ndim); |
| 37 | + Assert.AreEqual(x.shape[0], y.shape[0]); |
| 38 | + Assert.AreEqual(x.shape[1] - 2, y.shape[1]); |
| 39 | + Assert.AreEqual(x.shape[2] - 2, y.shape[2]); |
| 40 | + Assert.AreEqual(filters, y.shape[3]); |
| 41 | + } |
| 42 | + |
| 43 | + [TestMethod] |
| 44 | + public void BasicConv2D_ksize_same() |
| 45 | + { |
| 46 | + var filters = 8; |
| 47 | + var conv = keras.layers.Conv2D(filters, kernel_size: 3, padding: "same"); |
| 48 | + |
| 49 | + var x = np.arange(256.0f).reshape(1, 8, 8, 4); |
| 50 | + var y = conv.Apply(x); |
| 51 | + |
| 52 | + Assert.AreEqual(4, y.shape.ndim); |
| 53 | + Assert.AreEqual(x.shape[0], y.shape[0]); |
| 54 | + Assert.AreEqual(x.shape[1], y.shape[1]); |
| 55 | + Assert.AreEqual(x.shape[2], y.shape[2]); |
| 56 | + Assert.AreEqual(filters, y.shape[3]); |
| 57 | + } |
| 58 | + |
| 59 | + [TestMethod] |
| 60 | + public void BasicConv2D_ksize_strides() |
| 61 | + { |
| 62 | + var filters = 8; |
| 63 | + var conv = keras.layers.Conv2D(filters, kernel_size: 3, strides: 2); |
| 64 | + |
| 65 | + var x = np.arange(256.0f).reshape(1, 8, 8, 4); |
| 66 | + var y = conv.Apply(x); |
| 67 | + |
| 68 | + Assert.AreEqual(4, y.shape.ndim); |
| 69 | + Assert.AreEqual(x.shape[0], y.shape[0]); |
| 70 | + Assert.AreEqual(x.shape[1] - 5, y.shape[1]); |
| 71 | + Assert.AreEqual(x.shape[2] - 5, y.shape[2]); |
| 72 | + Assert.AreEqual(filters, y.shape[3]); |
| 73 | + } |
| 74 | + |
| 75 | + [TestMethod] |
| 76 | + public void BasicConv2D_ksize_dilation() |
| 77 | + { |
| 78 | + var filters = 8; |
| 79 | + var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2); |
| 80 | + |
| 81 | + var x = np.arange(256.0f).reshape(1, 8, 8, 4); |
| 82 | + var y = conv.Apply(x); |
| 83 | + |
| 84 | + Assert.AreEqual(4, y.shape.ndim); |
| 85 | + Assert.AreEqual(x.shape[0], y.shape[0]); |
| 86 | + Assert.AreEqual(x.shape[1] - 4, y.shape[1]); |
| 87 | + Assert.AreEqual(x.shape[2] - 4, y.shape[2]); |
| 88 | + Assert.AreEqual(filters, y.shape[3]); |
| 89 | + } |
| 90 | + } |
| 91 | +} |
0 commit comments