|
3 | 3 | using System.Linq; |
4 | 4 | using System.Text; |
5 | 5 |
|
6 | | -namespace Tensorflow |
| 6 | +namespace Tensorflow.Gradients |
7 | 7 | { |
8 | 8 | /// <summary> |
9 | 9 | /// Gradients for operators defined in math_ops.py. |
@@ -57,6 +57,38 @@ public static (Tensor, Tensor) _MulGrad(Operation op, Tensor grad) |
57 | 57 | return (reshape1, reshape2); |
58 | 58 | } |
59 | 59 |
|
| 60 | + public static (Tensor, Tensor) _MatMulGrad(Operation op, Tensor grad) |
| 61 | + { |
| 62 | + Tensor grad_a = null, grad_b = null; |
| 63 | + |
| 64 | + var t_a = (bool)op.get_attr("transpose_a"); |
| 65 | + var t_b = (bool)op.get_attr("transpose_b"); |
| 66 | + var a = math_ops.conj(op.inputs[0]); |
| 67 | + var b = math_ops.conj(op.inputs[1]); |
| 68 | + if(!t_a && !t_b) |
| 69 | + { |
| 70 | + grad_a = gen_math_ops.mat_mul(grad, b, transpose_b: true); |
| 71 | + grad_b = gen_math_ops.mat_mul(a, grad, transpose_a: true); |
| 72 | + } |
| 73 | + else if (!t_a && t_b) |
| 74 | + { |
| 75 | + grad_a = gen_math_ops.mat_mul(grad, b); |
| 76 | + grad_b = gen_math_ops.mat_mul(grad, a, transpose_a: true); |
| 77 | + } |
| 78 | + else if (t_a && !t_b) |
| 79 | + { |
| 80 | + grad_a = gen_math_ops.mat_mul(grad, b); |
| 81 | + grad_b = gen_math_ops.mat_mul(grad, a, transpose_a: true); |
| 82 | + } |
| 83 | + else if (t_a && t_b) |
| 84 | + { |
| 85 | + grad_a = gen_math_ops.mat_mul(b, grad, transpose_a: true, transpose_b: true); |
| 86 | + grad_b = gen_math_ops.mat_mul(grad, a, transpose_a: true, transpose_b: true); |
| 87 | + } |
| 88 | + |
| 89 | + return (grad_a, grad_b); |
| 90 | + } |
| 91 | + |
60 | 92 | public static (Tensor, Tensor) _MeanGrad(Operation op, Tensor grad) |
61 | 93 | { |
62 | 94 | var sum_grad = _SumGrad(op, grad).Item1; |
|
0 commit comments