@@ -82,37 +82,13 @@ public void TensorFlowOpLayer()
8282 /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
8383 /// </summary>
8484 [ TestMethod ]
85- public void Embedding_Simple ( )
86- {
87- var emb = keras . layers . Embedding ( 256 , 12 , input_length : 4 ) ;
88- var input_array = np . arange ( 12 ) . reshape ( ( 3 , 4 ) ) . astype ( np . float32 ) ;
89- var output = emb . Apply ( input_array ) ;
90- Assert . AreEqual ( ( 3 , 4 , 12 ) , output . shape ) ;
91- }
92-
93- /// <summary>
94- /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
95- /// </summary>
96- [ TestMethod ]
97- [ Ignore ]
9885 public void Embedding ( )
9986 {
10087 var model = keras . Sequential ( ) ;
101- var layer = keras . layers . Embedding ( 7 , 2 , input_length : 4 ) ;
88+ var layer = keras . layers . Embedding ( 1000 , 64 , input_length : 10 ) ;
10289 model . add ( layer ) ;
103- // the model will take as input an integer matrix of size (batch,
104- // input_length).
105- // the largest integer (i.e. word index) in the input should be no larger
106- // than 999 (vocabulary size).
107- // now model.output_shape == (None, 10, 64), where None is the batch
108- // dimension.
109- var input_array = np . array ( new int [ , ]
110- {
111- { 1 , 2 , 3 , 4 } ,
112- { 2 , 3 , 4 , 5 } ,
113- { 3 , 4 , 5 , 6 }
114- } ) ;
115- // model.compile("rmsprop", "mse");
90+ var input_array = np . random . randint ( 1000 , size : ( 32 , 10 ) ) ;
91+ model . compile ( "rmsprop" , "mse" , new [ ] { "accuracy" } ) ;
11692 var output_array = model . predict ( input_array ) ;
11793 Assert . AreEqual ( ( 32 , 10 , 64 ) , output_array . shape ) ;
11894 }
0 commit comments