@@ -56,30 +56,32 @@ PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
5656
5757Import TF.NET and Keras API in your project.
5858
59- ``` cs
59+ ``` csharp
6060using static Tensorflow .Binding ;
6161using static Tensorflow .KerasApi ;
62+ using Tensorflow ;
63+ using NumSharp ;
6264```
6365
6466Linear Regression in ` Eager ` mode:
6567
66- ``` c#
68+ ``` csharp
6769// Parameters
6870var training_steps = 1000 ;
6971var learning_rate = 0 . 01 f ;
7072var display_step = 100 ;
7173
7274// Sample data
73- var train_X = np .array (3 . 3 f , 4 . 4 f , 5 . 5 f , 6 . 71 f , 6 . 93 f , 4 . 168 f , 9 . 779 f , 6 . 182 f , 7 . 59 f , 2 . 167 f ,
75+ var X = np .array (3 . 3 f , 4 . 4 f , 5 . 5 f , 6 . 71 f , 6 . 93 f , 4 . 168 f , 9 . 779 f , 6 . 182 f , 7 . 59 f , 2 . 167 f ,
7476 7 . 042 f , 10 . 791 f , 5 . 313 f , 7 . 997 f , 5 . 654 f , 9 . 27 f , 3 . 1 f );
75- var train_Y = np .array (1 . 7 f , 2 . 76 f , 2 . 09 f , 3 . 19 f , 1 . 694 f , 1 . 573 f , 3 . 366 f , 2 . 596 f , 2 . 53 f , 1 . 221 f ,
77+ var Y = np .array (1 . 7 f , 2 . 76 f , 2 . 09 f , 3 . 19 f , 1 . 694 f , 1 . 573 f , 3 . 366 f , 2 . 596 f , 2 . 53 f , 1 . 221 f ,
7678 2 . 827 f , 3 . 465 f , 1 . 65 f , 2 . 904 f , 2 . 42 f , 2 . 94 f , 1 . 3 f );
77- var n_samples = train_X .shape [0 ];
79+ var n_samples = X .shape [0 ];
7880
7981// We can set a fixed init value in order to demo
8082var W = tf .Variable (- 0 . 06 f , name : " weight" );
8183var b = tf .Variable (- 0 . 73 f , name : " bias" );
82- var optimizer = tf .optimizers .SGD (learning_rate );
84+ var optimizer = keras .optimizers .SGD (learning_rate );
8385
8486// Run training for the given number of steps.
8587foreach (var step in range (1 , training_steps + 1 ))
0 commit comments