|
37 | 37 | _p = [1.0, 100.0] |
38 | 38 | cons_circ = (res, x, p) -> res .= [x[1]^2 + x[2]^2] |
39 | 39 | optprob = OptimizationFunction( |
40 | | - rosenbrock, OptimizationBase.AutoZygote(); |
| 40 | + rosenbrock, AutoZygote(); |
41 | 41 | cons = cons_circ) |
42 | 42 | prob = OptimizationProblem(optprob, x0, _p, ucons = [Inf], lcons = [0.0]) |
43 | 43 | evaluator = init(prob, Ipopt.Optimizer()).evaluator |
|
63 | 63 | _p = [1.0, 100.0] |
64 | 64 | l1 = rosenbrock(x0, _p) |
65 | 65 |
|
66 | | - optprob = OptimizationFunction((x, p) -> -rosenbrock(x, p), OptimizationBase.AutoZygote()) |
| 66 | + optprob = OptimizationFunction((x, p) -> -rosenbrock(x, p), AutoZygote()) |
67 | 67 | prob = OptimizationProblem(optprob, x0, _p; sense = OptimizationBase.MaxSense) |
68 | 68 |
|
69 | 69 | callback = function (state, l) |
|
79 | 79 | sol = solve!(cache) |
80 | 80 | @test 10 * sol.objective < l1 |
81 | 81 |
|
82 | | - optprob = OptimizationFunction(rosenbrock, OptimizationBase.AutoZygote()) |
| 82 | + optprob = OptimizationFunction(rosenbrock, AutoZygote()) |
83 | 83 | prob = OptimizationProblem(optprob, x0, _p; sense = OptimizationBase.MinSense) |
84 | 84 |
|
85 | 85 | opt = Ipopt.Optimizer() |
|
126 | 126 |
|
127 | 127 | cons_circ = (res, x, p) -> res .= [x[1]^2 + x[2]^2] |
128 | 128 | optprob = OptimizationFunction( |
129 | | - rosenbrock, OptimizationBase.AutoModelingToolkit(true, true); |
| 129 | + rosenbrock, AutoSparse(AutoSymbolics()); |
130 | 130 | cons = cons_circ) |
131 | 131 | prob = OptimizationProblem(optprob, x0, _p, ucons = [Inf], lcons = [0.0]) |
132 | 132 |
|
|
141 | 141 |
|
142 | 142 | @testset "backends" begin |
143 | 143 | backends = ( |
144 | | - OptimizationBase.AutoModelingToolkit(false, false), |
145 | | - OptimizationBase.AutoModelingToolkit(true, false), |
146 | | - OptimizationBase.AutoModelingToolkit(false, true), |
147 | | - OptimizationBase.AutoModelingToolkit(true, true)) |
| 144 | + AutoSymbolics(), |
| 145 | + AutoSparse(AutoSymbolics())) |
148 | 146 | for backend in backends |
149 | 147 | @testset "$backend" begin |
150 | 148 | _test_sparse_derivatives_hs071(backend, Ipopt.Optimizer()) |
|
167 | 165 | u0 = [0.0, 0.0, 0.0, 1.0] |
168 | 166 |
|
169 | 167 | optfun = OptimizationFunction((u, p) -> -v'u, cons = (res, u, p) -> res .= w'u, |
170 | | - OptimizationBase.AutoForwardDiff()) |
| 168 | + AutoForwardDiff()) |
171 | 169 |
|
172 | 170 | optprob = OptimizationProblem(optfun, u0; lb = zero.(u0), ub = one.(u0), |
173 | 171 | int = ones(Bool, length(u0)), |
|
185 | 183 | u0 = [1.0] |
186 | 184 |
|
187 | 185 | optfun = OptimizationFunction((u, p) -> sum(abs2, x * u[1] .- y), |
188 | | - OptimizationBase.AutoForwardDiff()) |
| 186 | + AutoForwardDiff()) |
189 | 187 |
|
190 | 188 | optprob = OptimizationProblem(optfun, u0; lb = one.(u0), ub = 6.0 .* u0, |
191 | 189 | int = ones(Bool, length(u0))) |
|
264 | 262 |
|
265 | 263 | cons(res, x, p) = (res .= [x[1]^2 + x[2]^2, x[1] * x[2]]) |
266 | 264 |
|
267 | | - optprob = OptimizationFunction(rosenbrock, OptimizationBase.AutoModelingToolkit(); |
| 265 | + optprob = OptimizationFunction(rosenbrock, AutoSymbolics(); |
268 | 266 | cons = cons) |
269 | 267 | prob = OptimizationProblem(optprob, x0, _p, lcons = [1.0, 0.5], ucons = [1.0, 0.5]) |
270 | 268 | sol = solve(prob, AmplNLWriter.Optimizer(Ipopt_jll.amplexe)) |
|
285 | 283 | end |
286 | 284 | lag_hess_prototype = sparse([1 1; 0 1]) |
287 | 285 |
|
288 | | - optprob = OptimizationFunction(rosenbrock, OptimizationBase.AutoForwardDiff(); |
| 286 | + optprob = OptimizationFunction(rosenbrock, AutoForwardDiff(); |
289 | 287 | cons = cons, lag_h = lagh, lag_hess_prototype) |
290 | 288 | prob = OptimizationProblem(optprob, x0, _p, lcons = [1.0, 0.5], ucons = [1.0, 0.5]) |
291 | 289 | sol = solve(prob, Ipopt.Optimizer()) |
|
0 commit comments