@@ -15,15 +15,20 @@ I. F. D. Oliveira and R. H. C. Takahashi.
1515The following keyword parameters are accepted.
1616
1717 - `n₀::Int = 10`, the 'slack'. Must not be negative. When n₀ = 0 the worst-case is
18- identical to that of bisection, but increacing n₀ provides greater oppotunity for
18+ identical to that of bisection, but increasing n₀ provides greater opportunity for
1919 superlinearity.
20- - `κ ₁::Float64 = 0.007 `. Must not be negative. The recomended value is `0.2/(x₂ - x₁) `.
20+ - `scaled_κ ₁::Float64 = 0.2 `. Must not be negative. The recommended value is `0.2`.
2121 Lower values produce tighter asymptotic behaviour, while higher values improve the
2222 steady-state behaviour when truncation is not helpful.
23- - `κ₂::Real = 1.5 `. Must lie in [1, 1+ϕ ≈ 2.62). Higher values allow for a greater
23+ - `κ₂::Real = 2 `. Must lie in [1, 1+ϕ ≈ 2.62). Higher values allow for a greater
2424 convergence rate, but also make the method more succeptable to worst-case performance.
25- In practice, κ=1,2 seems to work well due to the computational simplicity, as κ₂ is used
26- as an exponent in the method.
25+ In practice, κ₂=1, 2 seems to work well due to the computational simplicity, as κ₂ is
26+ used as an exponent in the method.
27+
28+ ### Computation of κ₁
29+
30+ In the current implementation, we compute κ₁ = scaled_κ₁·|Δx₀|^(1 - κ₂); this allows κ₁ to
31+ adapt to the length of the interval and keep the proposed steps proportional to Δx.
2732
2833### Worst Case Performance
2934
@@ -35,19 +40,19 @@ n½ + `n₀` iterations, where n½ is the number of iterations using bisection
3540If `f` is twice differentiable and the root is simple, then with `n₀` > 0 the convergence
3641rate is √`κ₂`.
3742"""
38- struct ITP{T} <: AbstractBracketingAlgorithm
39- k1 :: T
40- k2:: T
43+ struct ITP{T₁, T₂ } <: AbstractBracketingAlgorithm
44+ scaled_k1 :: T₁
45+ k2:: T₂
4146 n0:: Int
42- function ITP (; k1:: Real = 0.007 , k2:: Real = 1.5 , n0:: Int = 10 )
43- k1 < 0 && error (" Hyper-parameter κ₁ should not be negative" )
47+ function ITP (;
48+ scaled_k1:: T₁ = 0.2 , k2:: T₂ = 2 , n0:: Int = 10 ) where {T₁ <: Real , T₂ <: Real }
49+ scaled_k1 < 0 && error (" Hyper-parameter κ₁ should not be negative" )
4450 n0 < 0 && error (" Hyper-parameter n₀ should not be negative" )
4551 if k2 < 1 || k2 > (1.5 + sqrt (5 ) / 2 )
4652 throw (ArgumentError (" Hyper-parameter κ₂ should be between 1 and 1 + ϕ where \
4753 ϕ ≈ 1.618... is the golden ratio" ))
4854 end
49- T = promote_type (eltype (k1), eltype (k2))
50- return new {T} (k1, k2, n0)
55+ return new {T₁, T₂} (scaled_k1, k2, n0)
5156 end
5257end
5358
@@ -72,8 +77,8 @@ function SciMLBase.solve(prob::IntervalNonlinearProblem, alg::ITP, args...;
7277 end
7378 ϵ = abstol
7479 # defining variables/cache
75- k1 = alg. k1
7680 k2 = alg. k2
81+ k1 = alg. scaled_k1 * abs (right - left)^ (1 - k2)
7782 n0 = alg. n0
7883 n_h = ceil (log2 (abs (right - left) / (2 * ϵ)))
7984 mid = (left + right) / 2
@@ -88,7 +93,7 @@ function SciMLBase.solve(prob::IntervalNonlinearProblem, alg::ITP, args...;
8893 while i <= maxiters
8994 span = abs (right - left)
9095 r = ϵ_s - (span / 2 )
91- δ = k1 * (span^ k2 )
96+ δ = k1 * ((k2 == 2 ) ? span^ 2 : (span ^ k2) )
9297
9398 # # Interpolation step ##
9499 x_f = left + (right - left) * (fl / (fl - fr))
@@ -119,10 +124,11 @@ function SciMLBase.solve(prob::IntervalNonlinearProblem, alg::ITP, args...;
119124 xp <= tmin && (xp = nextfloat (tmin))
120125 yp = f (xp)
121126 yps = yp * sign (fr)
122- if yps > 0
127+ T0 = zero (yps)
128+ if yps > T0
123129 right = xp
124130 fr = yp
125- elseif yps < 0
131+ elseif yps < T0
126132 left = xp
127133 fl = yp
128134 else
0 commit comments