1+ function __internal_init end
2+ function __internal_solve! end
3+
14"""
25 AbstractDescentAlgorithm
36
@@ -10,15 +13,15 @@ in which case we use the normal form equations ``JᵀJ δu = Jᵀ fu``. Note tha
1013factorization is often the faster choice, but it is not as numerically stable as the least
1114squares solver.
1215
13- ### `SciMLBase.init ` specification
16+ ### `__internal_init ` specification
1417
1518```julia
16- SciMLBase.init (prob::NonlinearProblem{uType, iip}, alg::AbstractDescentAlgorithm, J, fu, u;
19+ __internal_init (prob::NonlinearProblem{uType, iip}, alg::AbstractDescentAlgorithm, J, fu, u;
1720 pre_inverted::Val{INV} = Val(false), linsolve_kwargs = (;), abstol = nothing,
1821 reltol = nothing, alias_J::Bool = true, shared::Val{N} = Val(1),
1922 kwargs...) where {INV, N, uType, iip} --> AbstractDescentCache
2023
21- SciMLBase.init (prob::NonlinearLeastSquaresProblem{uType, iip},
24+ __internal_init (prob::NonlinearLeastSquaresProblem{uType, iip},
2225 alg::AbstractDescentAlgorithm, J, fu, u; pre_inverted::Val{INV} = Val(false),
2326 linsolve_kwargs = (;), abstol = nothing, reltol = nothing, alias_J::Bool = true,
2427 shared::Val{N} = Val(1), kwargs...) where {INV, N, uType, iip} --> AbstractDescentCache
@@ -59,10 +62,10 @@ get_linear_solver(alg::AbstractDescentAlgorithm) = __getproperty(alg, Val(:linso
5962
6063Abstract Type for all Descent Caches.
6164
62- ### `SciMLBase.solve !` specification
65+ ### `__internal_solve !` specification
6366
6467```julia
65- δu, success, intermediates = SciMLBase.solve !(cache::AbstractDescentCache, J, fu, u,
68+ δu, success, intermediates = __internal_solve !(cache::AbstractDescentCache, J, fu, u,
6669 idx::Val; skip_solve::Bool = false, kwargs...)
6770```
6871
@@ -112,10 +115,10 @@ end
112115
113116Abstract Type for all Line Search Algorithms used in NonlinearSolve.jl.
114117
115- ### `SciMLBase.init ` specification
118+ ### `__internal_init ` specification
116119
117120```julia
118- SciMLBase.init (prob::AbstractNonlinearProblem,
121+ __internal_init (prob::AbstractNonlinearProblem,
119122 alg::AbstractNonlinearSolveLineSearchAlgorithm, f::F, fu, u, p, args...;
120123 internalnorm::IN = DEFAULT_NORM,
121124 kwargs...) where {F, IN} --> AbstractNonlinearSolveLineSearchCache
@@ -128,10 +131,10 @@ abstract type AbstractNonlinearSolveLineSearchAlgorithm end
128131
129132Abstract Type for all Line Search Caches used in NonlinearSolve.jl.
130133
131- ### `SciMLBase.solve !` specification
134+ ### `__internal_solve !` specification
132135
133136```julia
134- SciMLBase.solve !(cache::AbstractNonlinearSolveLineSearchCache, u, du; kwargs...)
137+ __internal_solve !(cache::AbstractNonlinearSolveLineSearchCache, u, du; kwargs...)
135138```
136139
137140Returns 2 values:
@@ -226,10 +229,10 @@ abstract type AbstractLinearSolverCache <: Function end
226229
227230Abstract Type for Damping Functions in DampedNewton.
228231
229- ### `SciMLBase.init ` specification
232+ ### `__internal_init ` specification
230233
231234```julia
232- SciMLBase.init (prob::AbstractNonlinearProblem, f::AbstractDampingFunction, initial_damping,
235+ __internal_init (prob::AbstractNonlinearProblem, f::AbstractDampingFunction, initial_damping,
233236 J, fu, u, args...; internal_norm = DEFAULT_NORM,
234237 kwargs...) --> AbstractDampingFunctionCache
235238```
@@ -254,10 +257,10 @@ Abstract Type for the Caches created by AbstractDampingFunctions
254257 - `(cache::AbstractDampingFunctionCache)(::Nothing)`: returns the damping factor. The type
255258 of the damping factor returned from `solve!` is guaranteed to be the same as this.
256259
257- ### `SciMLBase.solve !` specification
260+ ### `__internal_solve !` specification
258261
259262```julia
260- SciMLBase.solve !(cache::AbstractDampingFunctionCache, J, fu, args...; kwargs...)
263+ __internal_solve !(cache::AbstractDampingFunctionCache, J, fu, args...; kwargs...)
261264```
262265
263266Returns the damping factor.
@@ -310,10 +313,10 @@ Abstract Type for all Jacobian Initialization Algorithms used in NonlinearSolve.
310313 - `jacobian_initialized_preinverted(alg)`: whether or not the Jacobian is initialized
311314 preinverted. Defaults to `false`.
312315
313- ### `SciMLBase.init ` specification
316+ ### `__internal_init ` specification
314317
315318```julia
316- SciMLBase.init (prob::AbstractNonlinearProblem, alg::AbstractJacobianInitialization,
319+ __internal_init (prob::AbstractNonlinearProblem, alg::AbstractJacobianInitialization,
317320 solver, f::F, fu, u, p; linsolve = missing, internalnorm::IN = DEFAULT_NORM,
318321 kwargs...)
319322```
@@ -345,10 +348,10 @@ Abstract Type for all Approximate Jacobian Update Rules used in NonlinearSolve.j
345348
346349 - `store_inverse_jacobian(alg)`: Return `INV`
347350
348- ### `SciMLBase.init ` specification
351+ ### `__internal_init ` specification
349352
350353```julia
351- SciMLBase.init (prob::AbstractNonlinearProblem,
354+ __internal_init (prob::AbstractNonlinearProblem,
352355 alg::AbstractApproximateJacobianUpdateRule, J, fu, u, du, args...;
353356 internalnorm::F = DEFAULT_NORM,
354357 kwargs...) where {F} --> AbstractApproximateJacobianUpdateRuleCache{INV}
@@ -367,10 +370,10 @@ Abstract Type for all Approximate Jacobian Update Rule Caches used in NonlinearS
367370
368371 - `store_inverse_jacobian(alg)`: Return `INV`
369372
370- ### `SciMLBase.solve !` specification
373+ ### `__internal_solve !` specification
371374
372375```julia
373- SciMLBase.solve !(cache::AbstractApproximateJacobianUpdateRuleCache, J, fu, u, du;
376+ __internal_solve !(cache::AbstractApproximateJacobianUpdateRuleCache, J, fu, u, du;
374377 kwargs...) --> J / J⁻¹
375378```
376379"""
@@ -383,17 +386,17 @@ store_inverse_jacobian(::AbstractApproximateJacobianUpdateRuleCache{INV}) where
383386
384387Condition for resetting the Jacobian in Quasi-Newton's methods.
385388
386- ### `SciMLBase.init ` specification
389+ ### `__internal_init ` specification
387390
388391```julia
389- SciMLBase.init (alg::AbstractResetCondition, J, fu, u, du, args...;
392+ __internal_init (alg::AbstractResetCondition, J, fu, u, du, args...;
390393 kwargs...) --> ResetCache
391394```
392395
393- ### `SciMLBase.solve !` specification
396+ ### `__internal_solve !` specification
394397
395398```julia
396- SciMLBase.solve !(cache::ResetCache, J, fu, u, du) --> Bool
399+ __internal_solve !(cache::ResetCache, J, fu, u, du) --> Bool
397400```
398401"""
399402abstract type AbstractResetCondition end
@@ -403,10 +406,10 @@ abstract type AbstractResetCondition end
403406
404407Abstract Type for all Trust Region Methods used in NonlinearSolve.jl.
405408
406- ### `SciMLBase.init ` specification
409+ ### `__internal_init ` specification
407410
408411```julia
409- SciMLBase.init (prob::AbstractNonlinearProblem, alg::AbstractTrustRegionMethod,
412+ __internal_init (prob::AbstractNonlinearProblem, alg::AbstractTrustRegionMethod,
410413 f::F, fu, u, p, args...; internalnorm::IF = DEFAULT_NORM,
411414 kwargs...) where {F, IF} --> AbstractTrustRegionMethodCache
412415```
@@ -423,10 +426,10 @@ Abstract Type for all Trust Region Method Caches used in NonlinearSolve.jl.
423426 - `last_step_accepted(cache)`: whether or not the last step was accepted. Defaults to
424427 `cache.last_step_accepted`. Should if overloaded if the field is not present.
425428
426- ### `SciMLBase.solve !` specification
429+ ### `__internal_solve !` specification
427430
428431```julia
429- SciMLBase.solve !(cache::AbstractTrustRegionMethodCache, J, fu, u, δu, descent_stats)
432+ __internal_solve !(cache::AbstractTrustRegionMethodCache, J, fu, u, δu, descent_stats)
430433```
431434
432435Returns `last_step_accepted`, updated `u_cache` and `fu_cache`. If the last step was
0 commit comments