@@ -243,15 +243,17 @@ end
243243 x = ((0.0 - dx_/ 2 ): dx_ : (Float64 (π)+ dx_/ 2 ))[2 : end - 1 ]
244244 end
245245 t = sol. t
246+
246247 # Plots
247- using Plots
248- anim = @animate for (i,T) in enumerate (t)
249- exact = u_exact (x, T)
250- plot (x, exact, seriestype = :scatter ,label= " Analytic solution" )
251- plot! (x, sol. u[i], label= " Numeric solution" )
252- plot! (x, log .(abs .(exact- sol. u[i])), label= " Error at t = $(t[i]) " )
253- end
254- gif (anim, " plots/MOL_Linear_Diffusion_1D_Test03a_$disc .gif" , fps = 5 )
248+ # using Plots
249+ # anim = @animate for (i,T) in enumerate(t)
250+ # exact = u_exact(x, T)
251+ # plot(x, exact, seriestype = :scatter,label="Analytic solution")
252+ # plot!(x, sol.u[i], label="Numeric solution")
253+ # plot!(x, log.(abs.(exact-sol.u[i])), label="Log Error at t = $(t[i])")
254+ # end
255+ # gif(anim, "plots/MOL_Linear_Diffusion_1D_Test03a_$disc.gif", fps = 5)
256+
255257 # Test against exact solution
256258 # exact integral based on Neumann BCs
257259 integral_u_exact = t -> sum (sol. u[1 ] * dx[2 ]) + 2 * (exp (- t) - 1 )
0 commit comments