Skip to content
This repository was archived by the owner on Sep 28, 2024. It is now read-only.

Commit f4db7ea

Browse files
committed
Replace ADAM with Adam
1 parent 1221dc9 commit f4db7ea

File tree

9 files changed

+21
-21
lines changed

9 files changed

+21
-21
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ And then train as a Flux model.
7676

7777
```julia
7878
loss(𝐱, 𝐲) = l₂loss(model(𝐱), 𝐲)
79-
opt = Flux.Optimiser(WeightDecay(1f-4), Flux.ADAM(1f-3))
79+
opt = Flux.Optimiser(WeightDecay(1f-4), Flux.Adam(1f-3))
8080
Flux.@epochs 50 Flux.train!(loss, params(model), data, opt)
8181
```
8282

@@ -102,7 +102,7 @@ loss(xtrain, ytrain, sensor) = Flux.Losses.mse(model(xtrain, sensor), ytrain)
102102
evalcb() = @show(loss(xval, yval, grid))
103103

104104
learning_rate = 0.001
105-
opt = ADAM(learning_rate)
105+
opt = Adam(learning_rate)
106106
parameters = params(model)
107107
Flux.@epochs 400 Flux.train!(loss, parameters, [(xtrain, ytrain, grid)], opt, cb=evalcb)
108108
```

docs/src/index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ And then train as a Flux model.
5353

5454
```julia
5555
loss(𝐱, 𝐲) = l₂loss(model(𝐱), 𝐲)
56-
opt = Flux.Optimiser(WeightDecay(1f-4), Flux.ADAM(1f-3))
56+
opt = Flux.Optimiser(WeightDecay(1f-4), Flux.Adam(1f-3))
5757
Flux.@epochs 50 Flux.train!(loss, params(model), data, opt)
5858
```
5959

@@ -80,7 +80,7 @@ loss(xtrain, ytrain, sensor) = Flux.Losses.mse(model(xtrain, sensor), ytrain)
8080
evalcb() = @show(loss(xval, yval, grid))
8181

8282
learning_rate = 0.001
83-
opt = ADAM(learning_rate)
83+
opt = Adam(learning_rate)
8484
parameters = params(model)
8585
Flux.@epochs 400 Flux.train!(loss, parameters, [(xtrain, ytrain, grid)], opt, cb=evalcb)
8686
```

example/Burgers/src/Burgers.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ function train(; cuda = true, η₀ = 1.0f-3, λ = 1.0f-4, epochs = 500)
5656
model = FourierNeuralOperator(ch = (2, 64, 64, 64, 64, 64, 128, 1), modes = (16,),
5757
σ = gelu)
5858
data = get_dataloader()
59-
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.ADAM(η₀))
59+
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.Adam(η₀))
6060
loss_func = l₂loss
6161

6262
learner = Learner(model, data, optimiser, loss_func,
@@ -88,7 +88,7 @@ function train_nomad(; n = 300, cuda = true, learning_rate = 0.001, epochs = 400
8888
grid = rand(collect(0:0.001:1), (280, 1024)) |> device
8989
gridval = rand(collect(0:0.001:1), (20, 1024)) |> device
9090

91-
opt = ADAM(learning_rate)
91+
opt = Adam(learning_rate)
9292

9393
m = NOMAD((1024, 1024), (2048, 1024), gelu, gelu) |> device
9494

example/Burgers/src/Burgers_deeponet.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ function train_don(; n = 300, cuda = true, learning_rate = 0.001, epochs = 400)
2626

2727
grid = collect(range(0, 1, length = 1024)') |> device
2828

29-
opt = ADAM(learning_rate)
29+
opt = Adam(learning_rate)
3030

3131
m = DeepONet((1024, 1024, 1024), (1, 1024, 1024), gelu, gelu) |> device
3232

example/DoublePendulum/src/DoublePendulum.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ function train(; cuda = true, Δt = 1, η₀ = 1.0f-3, λ = 1.0f-4, epochs = 20)
9393
model = FourierNeuralOperator(ch = (2, 64, 64, 64, 64, 64, 128, 2), modes = (4, 16),
9494
σ = gelu)
9595
data = get_dataloader(Δt = Δt)
96-
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.ADAM(η₀))
96+
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.Adam(η₀))
9797
loss_func = l₂loss
9898

9999
learner = Learner(model, data, optimiser, loss_func,

example/FlowOverCircle/src/FlowOverCircle.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ function train(; cuda = true, η₀ = 1.0f-3, λ = 1.0f-4, epochs = 50)
6262
model = MarkovNeuralOperator(ch = (1, 64, 64, 64, 64, 64, 1), modes = (24, 24),
6363
σ = gelu)
6464
data = get_dataloader()
65-
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.ADAM(η₀))
65+
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.Adam(η₀))
6666
loss_func = l₂loss
6767

6868
learner = Learner(model, data, optimiser, loss_func,
@@ -92,7 +92,7 @@ function train_gno(; cuda = true, η₀ = 1.0f-3, λ = 1.0f-4, epochs = 50)
9292
WithGraph(featured_graph, GraphKernel(Dense(2 * 16, 16, gelu), 16)),
9393
Dense(16, 1))
9494
data = get_dataloader(batchsize = 16, flatten = true)
95-
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.ADAM(η₀))
95+
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.Adam(η₀))
9696
loss_func = l₂loss
9797

9898
learner = Learner(model, data, optimiser, loss_func,

example/SuperResolution/src/SuperResolution.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@ function train(; cuda = true, η₀ = 1.0f-3, λ = 1.0f-4, epochs = 50)
8787
model = MarkovNeuralOperator(ch = (1, 64, 64, 64, 64, 64, 1), modes = (24, 24),
8888
σ = gelu)
8989
data = get_dataloader()
90-
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.ADAM(η₀))
90+
optimiser = Flux.Optimiser(WeightDecay(λ), Flux.Adam(η₀))
9191
loss_func = l₂loss
9292

9393
learner = Learner(model, data, optimiser, loss_func,

test/model.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66

77
loss(𝐱, 𝐲) = sum(abs2, 𝐲 .- m(𝐱)) / size(𝐱)[end]
88
data = [(𝐱, 𝐲)]
9-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
9+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
1010
end
1111

1212
@testset "MarkovNeuralOperator" begin
@@ -17,5 +17,5 @@ end
1717

1818
loss(𝐱, 𝐲) = sum(abs2, 𝐲 .- m(𝐱)) / size(𝐱)[end]
1919
data = [(𝐱, 𝐲)]
20-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
20+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
2121
end

test/operator_kernel.jl

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313

1414
loss(x, y) = Flux.mse(m(x), y)
1515
data = [(𝐱, rand(Float32, 128, 1024, 5))]
16-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
16+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
1717
end
1818

1919
@testset "permuted 1D OperatorConv" begin
@@ -32,7 +32,7 @@ end
3232

3333
loss(x, y) = Flux.mse(m(x), y)
3434
data = [(𝐱, rand(Float32, 1024, 128, 5))]
35-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
35+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
3636
end
3737

3838
@testset "1D OperatorKernel" begin
@@ -49,7 +49,7 @@ end
4949

5050
loss(x, y) = Flux.mse(m(x), y)
5151
data = [(𝐱, rand(Float32, 128, 1024, 5))]
52-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
52+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
5353
end
5454

5555
@testset "permuted 1D OperatorKernel" begin
@@ -67,7 +67,7 @@ end
6767

6868
loss(x, y) = Flux.mse(m(x), y)
6969
data = [(𝐱, rand(Float32, 1024, 128, 5))]
70-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
70+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
7171
end
7272

7373
@testset "2D OperatorConv" begin
@@ -83,7 +83,7 @@ end
8383

8484
loss(x, y) = Flux.mse(m(x), y)
8585
data = [(𝐱, rand(Float32, 64, 22, 22, 5))]
86-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
86+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
8787
end
8888

8989
@testset "permuted 2D OperatorConv" begin
@@ -100,7 +100,7 @@ end
100100

101101
loss(x, y) = Flux.mse(m(x), y)
102102
data = [(𝐱, rand(Float32, 22, 22, 64, 5))]
103-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
103+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
104104
end
105105

106106
@testset "2D OperatorKernel" begin
@@ -115,7 +115,7 @@ end
115115

116116
loss(x, y) = Flux.mse(m(x), y)
117117
data = [(𝐱, rand(Float32, 64, 22, 22, 5))]
118-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
118+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
119119
end
120120

121121
@testset "permuted 2D OperatorKernel" begin
@@ -131,7 +131,7 @@ end
131131

132132
loss(x, y) = Flux.mse(m(x), y)
133133
data = [(𝐱, rand(Float32, 22, 22, 64, 5))]
134-
Flux.train!(loss, Flux.params(m), data, Flux.ADAM())
134+
Flux.train!(loss, Flux.params(m), data, Flux.Adam())
135135
end
136136

137137
@testset "SpectralConv" begin

0 commit comments

Comments
 (0)