From 6cf5e441004ff4542e0ce5407431e94593743d6e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Mon, 20 Jan 2025 00:16:30 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 7c2bee8..5bafa25 100644 --- a/README.md +++ b/README.md @@ -219,7 +219,7 @@ Where: - **$large \color{DeepSkyBlue} \( n \)$** : Summation index. -This series converges extraordinarily rapidly, making it highly efficient for calculating $\large \color{DeepSkyBlue} \frac{1}{\pi} \( \pi \)$ to many decimal places. In 1985, William Gosper used this formula to compute \( \pi \) to 17 million digits. +This series converges extraordinarily rapidly, making it highly efficient for calculating $\large \color{DeepSkyBlue} \frac{1}{\pi} \( \pi \)$ to many decimal places. In 1985, William Gosper used this formula to compute $\large \color{DeepSkyBlue} \frac{1}{\pi} \( \pi \)$ to 17 million digits. Ramanujan's deep insights into infinite series and modular forms continue to influence modern mathematical research and applications.