Skip to content

Commit 606e332

Browse files
Update README.md
Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com>
1 parent 34f4893 commit 606e332

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -211,13 +211,13 @@ Srinivasa Ramanujan made groundbreaking contributions to mathematics, particular
211211

212212
One of his most famous formulas is an infinite series for \( \frac{1}{\pi} \):
213213

214-
$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}$
214+
$\huge \color{DeepSkyBlue} \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}$
215215

216216
<br>
217217

218218
Where:
219219

220-
- **\( n \)**: Summation index.
220+
- **$\huge \color{DeepSkyBlue} \( n \)$** : Summation index.
221221

222222
This series converges extraordinarily rapidly, making it highly efficient for calculating \( \pi \) to many decimal places. In 1985, William Gosper used this formula to compute \( \pi \) to 17 million digits.
223223

0 commit comments

Comments
 (0)