@@ -92,7 +92,7 @@ import networkx as nx
9292$$
9393\begin{aligned}
9494 \min_{x_{ij}} \ & \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \\
95- \text{subject to } \ & \sum_{j=1}^n x_{ij} = p_i, & i = 1, 2, \dots, m \\
95+ \text{使得 } \ & \sum_{j=1}^n x_{ij} = p_i, & i = 1, 2, \dots, m \\
9696 & \sum_{i=1}^m x_{ij} = q_j, & j = 1, 2, \dots, n \\
9797 & x_{ij} \ge 0 \\
9898\end{aligned}
@@ -145,7 +145,6 @@ SciPy 函数 `linprog` 需要接收决策变量的*向量*。
145145
146146$$
147147\begin{aligned}
148-
149148\min_ {X} \ & \operatorname{tr} (C' X) \\
150149 \text{subject to } \ & X \ \mathbf{1}_ n = p \\
151150 & X' \ \mathbf{1}_ m = q \\
173172
174173$$
175174 A \otimes B =
176-
177175\begin{pmatrix}
178176 a_ {11}B & a_ {12}B & \dots & a_ {1s}B \\
179177 a_ {21}B & a_ {22}B & \dots & a_ {2s}B \\
222220$$
223221 \begin{aligned}
224222 \min_{z} \ & \operatorname{vec}(C)' z \\
225- \text{subject to } \ & A z = b \\
223+ \text{使得 } \ & A z = b \\
226224 & z \ge 0 \\
227225 \end{aligned}
228226$$ (decisionvars)
@@ -295,7 +293,6 @@ p = \begin{pmatrix}
295293 25 \\
296294 115 \\
297295 60 \\
298-
29929630 \\
300297 70
301298 \end{pmatrix}
@@ -431,7 +428,7 @@ for i in range(len(sol_found)):
431428 print(f" 最小成本 {i}: ", cost[i])
432429```
433430
434- **啊哈!**如你所见,在这种情况下,仅仅改变约束的顺序,就会显现出两个实现相同最小成本的最优传输方案。
431+ **啊哈!** 如你所见,在这种情况下,仅仅改变约束的顺序,就会显现出两个实现相同最小成本的最优传输方案。
435432
436433这就是我们之前计算出的两个方案。
437434
@@ -524,7 +521,7 @@ res.x.reshape((m, n), order='F')
524521$$
525522\begin{aligned}
526523\max_ {u_i, v_j} \ & \sum_ {i=1}^m p_i u_i + \sum_ {j=1}^n q_j v_j \\
527- \text{subject to } \ & u_i + v_j \le c_ {ij}, \ i = 1, 2, \dots, m;\ j = 1, 2, \dots, n \\
524+ \text{使得 } \ & u_i + v_j \le c_ {ij}, \ i = 1, 2, \dots, m;\ j = 1, 2, \dots, n \\
528525\end{aligned}
529526$$ (dualproblem)
530527
0 commit comments