@@ -76,7 +76,7 @@ plt.rcParams['font.family'] = ['Source Han Serif SC']
7676plt.rcParams["figure.figsize"] = (11, 5) #设置默认图形大小
7777import numpy as np
7878from quantecon import MarkovChain
79- from scipy.stats import norm
79+ import scipy.stats as stats
8080from scipy.optimize import brentq
8181from quantecon.distributions import BetaBinomial
8282from numba import jit
616616
617617工资报价分布将采用对数正态分布 $LN(\log(20),1)$ 的离散化版本,如下图所示:
618618
619- ``` {figure} /_static/lecture_specific/lake_model/lake_distribution_wages.png
620-
619+ ``` {code-cell} ipython3
620+ def create_wage_distribution(max_wage: float,
621+ wage_grid_size: int,
622+ log_wage_mean: float):
623+ """Create wage distribution"""
624+ w_vec_temp = np.linspace(1e-8, max_wage,
625+ wage_grid_size + 1)
626+ cdf = stats.norm.cdf(np.log(w_vec_temp),
627+ loc=np.log(log_wage_mean), scale=1)
628+ pdf = cdf[1:] - cdf[:-1]
629+ p_vec = pdf / pdf.sum()
630+ w_vec = (w_vec_temp[1:] + w_vec_temp[:-1]) / 2
631+ return w_vec, p_vec
632+
633+ w_vec, p_vec = create_wage_distribution(170, 200, 20)
634+
635+ fig, ax = plt.subplots()
636+ ax.plot(w_vec, p_vec)
637+ ax.set_xlabel('工资')
638+ ax.set_ylabel('概率')
639+ plt.tight_layout()
640+ plt.show()
621641```
622642
643+
623644我们将一个时期设为一个月。
624645
625646设定参数 $b$ 和 $d$ 分别为美国人口的月度[ 出生率] ( https://www.cdc.gov/nchs/fastats/births.htm ) 和[ 死亡率] ( https://www.cdc.gov/nchs/fastats/deaths.htm ) 率:
@@ -784,16 +805,6 @@ d = 0.00822
784805γ = 1.0
785806σ = 2.0
786807
787- # 默认工资分布 --- 离散化的对数正态
788- log_wage_mean, wage_grid_size, max_wage = 20, 200, 170
789- logw_dist = norm(np.log(log_wage_mean), 1)
790- w_vec = np.linspace(1e-8, max_wage, wage_grid_size + 1)
791- cdf = logw_dist.cdf(np.log(w_vec))
792- pdf = cdf[1:] - cdf[:-1]
793- p_vec = pdf / pdf.sum()
794- w_vec = (w_vec[1:] + w_vec[:-1]) / 2
795-
796-
797808def compute_optimal_quantities(c, τ):
798809 """
799810 给定c和τ计算劳动者的保留工资、工作找到率和价值函数。
@@ -993,7 +1004,7 @@ class LakeModelModified:
9931004
9941005
9951006 def rate_steady_state(self, tol=1e-6):
996- """
1007+ r """
9971008 找到系统 :math:`x_{t+1} = \hat A x_{t}` 的稳态
9981009
9991010 返回
0 commit comments