Skip to content

Commit f4a0699

Browse files
Tom's Mar 7 edits of svd lecture
1 parent 91e4030 commit f4a0699

File tree

1 file changed

+43
-17
lines changed

1 file changed

+43
-17
lines changed

lectures/svd_intro.md

Lines changed: 43 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -642,23 +642,24 @@ where the matrix $\Sigma^{-1}$ is constructed by replacing each non-zero element
642642
We could use formula {eq}`eq:Xpinverse` together with formula {eq}`eq:Afullformula` to compute the matrix $A$ of regression coefficients.
643643
644644
Instead of doing that, we'll use **dynamic mode decomposition** to compute a rank $r$ approximation to $A$,
645-
where $r < < p$.
645+
where $r < p$.
646646
647647
648648
The idea behind **dynamic mode decomposition** is to construct this low rank approximation to $A$ that
649649
650650
* sidesteps computing the generalized inverse $X^{+}$
651651
652-
* constructs an $m \times r$ matrix $\Phi$ that captures effects on all $m$ variables of $r < < p$ **modes** that are associated with the $r$ largest eigenvalues of $A$
652+
* constructs an $m \times r$ matrix $\Phi$ that captures effects on all $m$ variables of $r \leq p$ **modes** that are associated with the $r$ largest eigenvalues of $A$
653653
654654
655655
* uses $\Phi$ and powers of the $r$ largest eigenvalues of $A$ to forecast *future* $X_t$'s
656656
657657
658658
An important properities of the DMD algorithm that we shall describe soon is that
659659
660-
* columns of the $m \times r$ matrix $\Phi$ are the eigenvectors of $A$ that correspond to the $r$ largest eigenvalues of $A$
661-
* Tu et al. {cite}`tu_Rowley` verify these useful properties
660+
* columns of the $m \times r$ matrix $\Phi$ are eigenvectors of $A$ that correspond to the $r$ largest eigenvalues of $A$
661+
* Tu et al. {cite}`tu_Rowley` verify these useful properties
662+
* We'll provide their proof below
662663
663664
664665
@@ -730,24 +731,13 @@ To construct a DMD, we deploy the following steps:
730731
\Phi = X' \tilde V \tilde \Sigma^{-1} W
731732
$$ (eq:Phiformula)
732733
733-
As asserted above, columns of $\Phi$ are the eigenvectors of $A$ corresponding to the largest eigenvalues of $A$.
734+
As asserted above, and as we shall soon verify, columns of $\Phi$ are eigenvectors of $A$ corresponding to the largest $r$ eigenvalues of $A$.
734735
735736
736737
737738
We can construct an $r \times m$ matrix generalized inverse $\Phi^{+}$ of $\Phi$.
738739
739740
740-
* It will be helpful below to notice that from formula {eq}`eq:Phiformula`, we have
741-
742-
$$
743-
\begin{aligned}
744-
A \Phi & = (X' \tilde V \tilde \Sigma^{-1} \tilde U^T) (X' \tilde V \tilde \Sigma^{-1} W) \cr
745-
& = X' \tilde V \Sigma^{-1} \tilde A W \cr
746-
& = X' \tilde V \tilde \Sigma^{-1} W \Lambda \cr
747-
& = \Phi \Lambda
748-
\end{aligned}
749-
$$ (eq:APhiLambda)
750-
751741
752742
753743
@@ -761,6 +751,42 @@ To construct a DMD, we deploy the following steps:
761751
762752
763753
754+
**Proof of Eigenvector Sharing**
755+
756+
From formula {eq}`eq:Phiformula` we have
757+
758+
$$
759+
\begin{aligned}
760+
A \Phi & = (X' \tilde V \tilde \Sigma^{-1} \tilde U^T) (X' \tilde V \tilde \Sigma^{-1} W) \cr
761+
& = X' \tilde V \Sigma^{-1} \tilde A W \cr
762+
& = X' \tilde V \tilde \Sigma^{-1} W \Lambda \cr
763+
& = \Phi \Lambda
764+
\end{aligned}
765+
$$
766+
767+
Thus, we can conclude that
768+
769+
$$
770+
A \Phi = \Phi \Lambda
771+
$$ (eq:APhiLambda)
772+
773+
Let $\phi_i$ be the the $i$the column of $\Phi$ and $\lambda_i$ be the corresponding $i$ eigenvalue of $\tilde A$ from decomposition {eq}`eq:tildeAeigen`.
774+
775+
Writing out the $m \times r$ vectors on both sides of equation {eq}`eq:APhiLambda` and equating them gives
776+
777+
778+
$$
779+
A \phi_i = \lambda_i \phi_i .
780+
$$
781+
782+
Thus, $\phi_i$ is an eigenvector of $A$ corresponding to eigenvalue $\lambda_i$ of $\tilde A$.
783+
784+
785+
786+
787+
788+
789+
764790
765791
766792
### Putting Things Together
@@ -780,7 +806,7 @@ $$
780806
X_{t+1} = A X_t .
781807
$$ (eq:Xdynamicstrue)
782808
783-
When $r << p $, equation {eq}`eq:Xdynamicsapprox` is an approximation (of reduced order $r$) to the $X$ dynamics in equation
809+
When $r < p $, equation {eq}`eq:Xdynamicsapprox` is an approximation (of reduced order $r$) to the $X$ dynamics in equation
784810
{eq}`eq:Xdynamicstrue`.
785811
786812

0 commit comments

Comments
 (0)