You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lectures/svd_intro.md
+43-17Lines changed: 43 additions & 17 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -642,23 +642,24 @@ where the matrix $\Sigma^{-1}$ is constructed by replacing each non-zero element
642
642
We could use formula {eq}`eq:Xpinverse` together with formula {eq}`eq:Afullformula` to compute the matrix $A$ of regression coefficients.
643
643
644
644
Instead of doing that, we'll use **dynamic mode decomposition** to compute a rank $r$ approximation to $A$,
645
-
where $r < < p$.
645
+
where $r < p$.
646
646
647
647
648
648
The idea behind **dynamic mode decomposition** is to construct this low rank approximation to $A$ that
649
649
650
650
* sidesteps computing the generalized inverse $X^{+}$
651
651
652
-
* constructs an $m \times r$ matrix $\Phi$ that captures effects on all $m$ variables of $r < < p$ **modes** that are associated with the $r$ largest eigenvalues of $A$
652
+
* constructs an $m \times r$ matrix $\Phi$ that captures effects on all $m$ variables of $r \leq p$ **modes** that are associated with the $r$ largest eigenvalues of $A$
653
653
654
654
655
655
* uses $\Phi$ and powers of the $r$ largest eigenvalues of $A$ to forecast *future* $X_t$'s
656
656
657
657
658
658
An important properities of the DMD algorithm that we shall describe soon is that
659
659
660
-
* columns of the $m \times r$ matrix $\Phi$ are the eigenvectors of $A$ that correspond to the $r$ largest eigenvalues of $A$
661
-
* Tu et al. {cite}`tu_Rowley` verify these useful properties
660
+
* columns of the $m \times r$ matrix $\Phi$ are eigenvectors of $A$ that correspond to the $r$ largest eigenvalues of $A$
661
+
* Tu et al. {cite}`tu_Rowley` verify these useful properties
662
+
* We'll provide their proof below
662
663
663
664
664
665
@@ -730,24 +731,13 @@ To construct a DMD, we deploy the following steps:
730
731
\Phi = X' \tilde V \tilde \Sigma^{-1} W
731
732
$$ (eq:Phiformula)
732
733
733
-
As asserted above, columns of $\Phi$ are the eigenvectors of $A$ corresponding to the largest eigenvalues of $A$.
734
+
As asserted above, and as we shall soon verify, columns of $\Phi$ are eigenvectors of $A$ corresponding to the largest $r$ eigenvalues of $A$.
734
735
735
736
736
737
737
738
We can construct an $r \times m$ matrix generalized inverse $\Phi^{+}$ of $\Phi$.
738
739
739
740
740
-
* It will be helpful below to notice that from formula {eq}`eq:Phiformula`, we have
741
-
742
-
$$
743
-
\begin{aligned}
744
-
A \Phi & = (X' \tilde V \tilde \Sigma^{-1} \tilde U^T) (X' \tilde V \tilde \Sigma^{-1} W) \cr
745
-
& = X' \tilde V \Sigma^{-1} \tilde A W \cr
746
-
& = X' \tilde V \tilde \Sigma^{-1} W \Lambda \cr
747
-
& = \Phi \Lambda
748
-
\end{aligned}
749
-
$$ (eq:APhiLambda)
750
-
751
741
752
742
753
743
@@ -761,6 +751,42 @@ To construct a DMD, we deploy the following steps:
761
751
762
752
763
753
754
+
**Proof of Eigenvector Sharing**
755
+
756
+
From formula {eq}`eq:Phiformula` we have
757
+
758
+
$$
759
+
\begin{aligned}
760
+
A \Phi & = (X' \tilde V \tilde \Sigma^{-1} \tilde U^T) (X' \tilde V \tilde \Sigma^{-1} W) \cr
761
+
& = X' \tilde V \Sigma^{-1} \tilde A W \cr
762
+
& = X' \tilde V \tilde \Sigma^{-1} W \Lambda \cr
763
+
& = \Phi \Lambda
764
+
\end{aligned}
765
+
$$
766
+
767
+
Thus, we can conclude that
768
+
769
+
$$
770
+
A \Phi = \Phi \Lambda
771
+
$$ (eq:APhiLambda)
772
+
773
+
Let $\phi_i$ be the the $i$the column of $\Phi$ and $\lambda_i$ be the corresponding $i$ eigenvalue of $\tilde A$ from decomposition {eq}`eq:tildeAeigen`.
774
+
775
+
Writing out the $m \times r$ vectors on both sides of equation {eq}`eq:APhiLambda` and equating them gives
776
+
777
+
778
+
$$
779
+
A \phi_i = \lambda_i \phi_i .
780
+
$$
781
+
782
+
Thus, $\phi_i$ is an eigenvector of $A$ corresponding to eigenvalue $\lambda_i$ of $\tilde A$.
783
+
784
+
785
+
786
+
787
+
788
+
789
+
764
790
765
791
766
792
### Putting Things Together
@@ -780,7 +806,7 @@ $$
780
806
X_{t+1} = A X_t .
781
807
$$ (eq:Xdynamicstrue)
782
808
783
-
When $r << p $, equation {eq}`eq:Xdynamicsapprox` is an approximation (of reduced order $r$) to the $X$ dynamics in equation
809
+
When $r < p $, equation {eq}`eq:Xdynamicsapprox` is an approximation (of reduced order $r$) to the $X$ dynamics in equation
0 commit comments