Skip to content

Commit ef77620

Browse files
Tom's fixes of two lectures for Matt, June 28
1 parent 00b0760 commit ef77620

File tree

2 files changed

+33
-4
lines changed

2 files changed

+33
-4
lines changed

lectures/ar1_turningpts.md

Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -210,6 +210,16 @@ Z_t(Y(\omega)) := \left\{
210210
\end{array} \right.
211211
$$ -->
212212
213+
214+
215+
$$
216+
Z_t(Y(\omega)) := \left.
217+
\begin{cases}
218+
\ 1 & \text{if } Y_t(\omega)< Y_{t-1}(\omega)< Y_{t-2}(\omega) \geq Y_{t-3}(\omega) \\
219+
0 & \text{otherwise}
220+
\end{cases}
221+
$$
222+
213223
Then the random variable **time until the next turning point** is defined as the following **stopping time** with respect to $Z$:
214224
215225
$$
@@ -236,6 +246,18 @@ T_t(Y(\omega)) := \left\{
236246
\end{array} \right.
237247
$$ -->
238248
249+
250+
$$
251+
T_t(Y(\omega)) := \left.
252+
\begin{cases}
253+
\ 1 & \text{if } Y_{t-2}(\omega)> Y_{t-1}(\omega) > Y_{t}(\omega) \ \text{and } \ Y_{t}(\omega) < Y_{t+1}(\omega) < Y_{t+2}(\omega) \\
254+
\ -1 & \text{if } Y_{t-2}(\omega)< Y_{t-1}(\omega) < Y_{t}(\omega) \ \text{and } \ Y_{t}(\omega) > Y_{t+1}(\omega) > Y_{t+2}(\omega) \\
255+
0 & \text{otherwise}
256+
\end{cases}
257+
$$
258+
259+
260+
239261
Define a **positive turning point today or tomorrow** statistic as
240262
241263
<!-- $$
@@ -246,6 +268,15 @@ P_t(\omega) := \left\{
246268
\end{array} \right.
247269
$$ -->
248270
271+
272+
$$
273+
P_t(\omega) := \left.
274+
\begin{cases}
275+
\ 1 & \text{if } T_t(\omega)=1 \ \text{or} \ T_{t+1}(\omega)=1 \\
276+
0 & \text{otherwise}
277+
\end{cases}
278+
$$
279+
249280
This is designed to express the event
250281
251282
- ``after one or two decrease(s), $Y$ will grow for two consecutive quarters''

lectures/prob_matrix.md

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,7 @@ We call this the induced probability distribution of random variable $X$.
8888
8989
Before diving in, we'll say a few words about what probability theory means and how it connects to statistics.
9090
91-
These are topics that are also touched on in these quantecon lectures :XXXXX TOM ADD
91+
These are topics that are also touched on in the quantecon lectures <https://python.quantecon.org/prob_meaning.html> and <https://python.quantecon.org/navy_captain.html>.
9292
9393
For much of this lecture we'll be discussing fixed "population" probabilities.
9494
@@ -1671,9 +1671,7 @@ Copula functions are often used to characterize **dependence** of random variab
16711671

16721672
**Discrete marginal distribution**
16731673

1674-
TOM -- REWRITE OR MAYBE DROP PARTS OF
1675-
1676-
If no copula function is given, there could be more than one copulings for two given mariginal distributions.
1674+
As mentioned above, for two given marginal distributions there can be more than one coupling.
16771675

16781676
For example, consider two random variables $X, Y$ with distributions
16791677

0 commit comments

Comments
 (0)