@@ -495,6 +495,9 @@ update_cross_section_jax = jax.jit(update_cross_section_jax, static_argnums=(1,3
495495Here's some type information to help Numba.
496496
497497``` {code-cell} ipython3
498+ ---
499+ tags: [hide-input]
500+ ---
498501wealth_dynamics_data = [
499502 ('w_hat', float64), # savings parameter
500503 ('s_0', float64), # savings parameter
@@ -518,6 +521,9 @@ Here's a class that stores instance data and implements methods that update
518521the aggregate state and household wealth.
519522
520523``` {code-cell} ipython3
524+ ---
525+ tags: [hide-input]
526+ ---
521527@jitclass(wealth_dynamics_data)
522528class WealthDynamics:
523529
@@ -613,6 +619,9 @@ Now here's function to simulate a cross section of households forward in time.
613619Note the use of parallelization to speed up computation.
614620
615621``` {code-cell} ipython3
622+ ---
623+ tags: [hide-input]
624+ ---
616625@njit(parallel=True)
617626def update_cross_section(wdy, w_distribution, shift_length=500):
618627 """
@@ -709,7 +718,12 @@ def generate_lorenz_and_gini_jax(wdy, num_households=100_000, T=500):
709718 return qe.gini_coefficient(ψ_star), qe.lorenz_curve(ψ_star)
710719```
711720
721+ The following function uses the numba implementation
722+
712723``` {code-cell} ipython3
724+ ---
725+ tags: [hide-input]
726+ ---
713727# Uses numba
714728def generate_lorenz_and_gini(wdy, num_households=100_000, T=500):
715729 """
@@ -754,6 +768,9 @@ plt.show()
754768Now let's try to run the same code snippet but using the numba version.
755769
756770``` {code-cell} ipython3
771+ ---
772+ tags: [hide-input]
773+ ---
757774%%time
758775
759776fig, ax = plt.subplots()
@@ -829,6 +846,9 @@ plt.show()
829846Using numba, we get,
830847
831848``` {code-cell} ipython3
849+ ---
850+ tags: [hide-input]
851+ ---
832852%%time
833853
834854fig, ax = plt.subplots()
0 commit comments