Skip to content

Commit a89215c

Browse files
Tom's Feb 28 edits of svd lecture
1 parent c592951 commit a89215c

File tree

1 file changed

+67
-30
lines changed

1 file changed

+67
-30
lines changed

lectures/svd_intro.md

Lines changed: 67 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -545,7 +545,7 @@ where for $t = 1, \ldots, n$, the $m \times 1 $ vector $X_t$ is
545545
546546
$$ X_t = \begin{bmatrix} X_{1,t} & X_{2,t} & \cdots & X_{m,t} \end{bmatrix}^T $$
547547

548-
where $T$ denotes transposition and $X_{i,t}$ is an observations on variable $i$ at time $t$.
548+
where $T$ denotes transposition and $X_{i,t}$ is an observation on variable $i$ at time $t$.
549549

550550
From $\tilde X$, form two matrices
551551

@@ -559,7 +559,7 @@ $$
559559
X' = \begin{bmatrix} X_2 \mid X_3 \mid \cdots \mid X_n\end{bmatrix}
560560
$$
561561

562-
(Note that here $'$ does not denote matrix transposition but instead is part of the name of the matrix $X'$.)
562+
Here $'$ does not denote matrix transposition but instead is part of the name of the matrix $X'$.
563563

564564
In forming $ X$ and $X'$, we have in each case dropped a column from $\tilde X$.
565565

@@ -577,66 +577,86 @@ $$
577577
A = X' X^{+}
578578
$$
579579

580-
and where the (huge) $m \times m $ matrix $X^{+}$ is the Moore-Penrose generalized inverse of $X$ that we could compute
580+
and where the (huge) $m \times m $ matrix $X^{+}$ is the Moore-Penrose generalized inverse of $X$.
581+
582+
583+
Think about the singular value decomposition
584+
585+
$$
586+
X = \tilde U \tilde \Sigma \tilde V^T
587+
$$
588+
589+
where $\tilde U$ is $m \times r$, $\tilde \Sigma$ is an $r \times r$ diagonal matrix, and $\tilde V^T$ is an $r \times \tilde n$ matrix.
590+
591+
592+
We could compute the generalized inverse $X^+$ by using
581593
as
582594

583595
$$
584-
X^{+} = V \Sigma^{-1} U^T
596+
X^{+} = \tilde V \tilde \Sigma^{-1} \tilde U^T
585597
$$
586598

587-
where the matrix $\Sigma^{-1}$ is constructed by replacing each non-zero element of $\Sigma$ with $\sigma_j^{-1}$.
599+
where the matrix $\tilde \Sigma^{-1}$ is constructed by replacing each non-zero element of $\tilde \Sigma$ with $\sigma_j^{-1}$.
588600

589601
The idea behind **dynamic mode decomposition** is to construct an approximation that
590602

591603
* sidesteps computing the generalized inverse $X^{+}$
592604

593-
* retains only the largest $\tilde r< < r$ eigenvalues and associated eigenvectors of $U$ and $V^T$
605+
* retains only the largest $\tilde r< < r$ eigenvalues and associated eigenvectors of $\tilde U$ and $\tilde V^T$
594606

595-
* constructs an $m \times \tilde r$ matrix $\Phi$ that captures effects on all $m$ variables of $r$ dynamic modes
607+
* constructs an $m \times \tilde r$ matrix $\Phi$ that captures effects on all $m$ variables of $\tilde r$ dynamic modes that are associated with the $\tilde r$ largest singular values
596608

597609
* uses $\Phi$ and powers of $\tilde r$ leading singular values to forecast *future* $X_t$'s
598610

599611
The magic of **dynamic mode decomposition** is that we accomplish this without ever computing the regression coefficients $A = X' X^{+}$.
600612

601613
To construct a DMD, we deploy the following steps:
602614

603-
* Compute the singular value decomposition
604-
605-
$$
606-
X = U \Sigma V^T
607-
$$
608615

609-
where $U$ is $m \times r$, $\Sigma$ is an $r \times r$ diagonal matrix, and $V^T$ is an $r \times \tilde n$ matrix.
610-
611-
612-
* Notice that (though it would be costly), we could compute $A$ by solving
616+
* As described above, though it would be costly, we could compute $A$ by solving
613617

614618
$$
615619
A = X' V \Sigma^{-1} U^T
616-
$$
620+
$$ (eq:bigAformula)
617621
618622
But we won't do that.
619623
620-
Instead we'll proceed as follows.
621-
622-
Note that since, $X' = A U \Sigma V^T$, we know that
624+
The matrix $A$ is $m \times m$.
625+
623626
627+
We'll the instead work with a reduced-order system of dimension $\tilde r$ by forming an $\tilde r \times \tilde r$ transition matrix
628+
$\tilde A$ defined by
629+
624630
$$
625-
A U = X' V \Sigma^{-1}
631+
\tilde A = \tilde U^T A \tilde U
632+
$$ (eq:tildeA_1)
633+
634+
The $\tilde A$ matrix governs the dynamics of the $\tilde r \times 1$ vector $\tilde x_t $
635+
according to
636+
637+
$$
638+
\tilde x_{t+1} = \tilde A \tilde x_t
626639
$$
627-
628-
so that
629-
640+
641+
where an approximation to the original $m \times 1$ vector $x_t$ can be acquired from
642+
643+
$$
644+
x_t = \tilde U \tilde x_t
630645
$$
631-
U^T X' V \Sigma^{-1} = U^T A U \equiv \tilde A
646+
647+
From equation {eq}`eq:tildeA_1` and {eq}`eq:bigAformula` it follows that
648+
649+
650+
$$
651+
\tilde A = \tilde U^T X' \tilde V \Sigma^{-1}
632652
$$ (eq:tildeAform)
653+
654+
633655
634-
* At this point, we deploy a reduced-dimension version of formula {eq}`eq:tildeAform} by
635-
* using only the columns of $U$ that correspond to the $\tilde r$ largest singular values.
636656
637-
Tu et al. {cite}`tu_Rowley` verify that eigenvalues and eigenvectors of $\tilde A$ equal the leading eigenvalues and associated eigenvectors of $A$.
657+
* Tu et al. {cite}`tu_Rowley` verify that eigenvalues and eigenvectors of $\tilde A$ equal the leading eigenvalues and associated eigenvectors of $A$.
638658
639-
* Construct an eigencomposition of $\tilde A$ that satisfies
659+
* Construct an eigencomposition of $\tilde A$
640660
641661
$$
642662
\tilde A W = W \Lambda
@@ -649,7 +669,9 @@ To construct a DMD, we deploy the following steps:
649669
650670
$$
651671
\Phi = X' V \Sigma^{-1} W
652-
$$
672+
$$ (eq:Phiformula)
673+
674+
653675
654676
Let $\Phi^{+}$ be a generalized inverse of $\Phi$; $\Phi^{+}$ is an $\tilde r \times m$ matrix.
655677
@@ -676,6 +698,21 @@ $$
676698
$$
677699
678700
701+
### Useful Connections
702+
703+
From formula {eq}`eq:Phiformula`, notice that
704+
705+
$$
706+
\begin{aligned}
707+
A \Phi & = (X' \tilde V \tilde \Sigma^{-1} \tilde U^T) (X' \tilde V \tilde \Sigma^{-1} W) \cr
708+
& = X' \tilde V \Sigma^{-1} \tilde A W \cr
709+
& = X' \tilde V \tilde \Sigma^{-1} W \Lambda \cr
710+
& = \Phi \Lambda
711+
\end{aligned}
712+
$$
713+
714+
715+
679716
## Reduced-order VAR
680717
681718
DMD is a natural tool for estimating a **reduced order vector autoregression**,

0 commit comments

Comments
 (0)