You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(Note that here $'$ does not denote matrix transposition but instead is part of the name of the matrix $X'$.)
562
+
Here $'$ does not denote matrix transposition but instead is part of the name of the matrix $X'$.
563
563
564
564
In forming $ X$ and $X'$, we have in each case dropped a column from $\tilde X$.
565
565
@@ -577,66 +577,86 @@ $$
577
577
A = X' X^{+}
578
578
$$
579
579
580
-
and where the (huge) $m \times m $ matrix $X^{+}$ is the Moore-Penrose generalized inverse of $X$ that we could compute
580
+
and where the (huge) $m \times m $ matrix $X^{+}$ is the Moore-Penrose generalized inverse of $X$.
581
+
582
+
583
+
Think about the singular value decomposition
584
+
585
+
$$
586
+
X = \tilde U \tilde \Sigma \tilde V^T
587
+
$$
588
+
589
+
where $\tilde U$ is $m \times r$, $\tilde \Sigma$ is an $r \times r$ diagonal matrix, and $\tilde V^T$ is an $r \times \tilde n$ matrix.
590
+
591
+
592
+
We could compute the generalized inverse $X^+$ by using
581
593
as
582
594
583
595
$$
584
-
X^{+} = V \Sigma^{-1} U^T
596
+
X^{+} = \tilde V \tilde \Sigma^{-1} \tilde U^T
585
597
$$
586
598
587
-
where the matrix $\Sigma^{-1}$ is constructed by replacing each non-zero element of $\Sigma$ with $\sigma_j^{-1}$.
599
+
where the matrix $\tilde \Sigma^{-1}$ is constructed by replacing each non-zero element of $\tilde \Sigma$ with $\sigma_j^{-1}$.
588
600
589
601
The idea behind **dynamic mode decomposition** is to construct an approximation that
590
602
591
603
* sidesteps computing the generalized inverse $X^{+}$
592
604
593
-
* retains only the largest $\tilde r< < r$ eigenvalues and associated eigenvectors of $U$ and $V^T$
605
+
* retains only the largest $\tilde r< < r$ eigenvalues and associated eigenvectors of $\tilde U$ and $\tilde V^T$
594
606
595
-
* constructs an $m \times \tilde r$ matrix $\Phi$ that captures effects on all $m$ variables of $r$ dynamic modes
607
+
* constructs an $m \times \tilde r$ matrix $\Phi$ that captures effects on all $m$ variables of $\tilde r$ dynamic modes that are associated with the $\tilde r$ largest singular values
596
608
597
609
* uses $\Phi$ and powers of $\tilde r$ leading singular values to forecast *future* $X_t$'s
598
610
599
611
The magic of **dynamic mode decomposition** is that we accomplish this without ever computing the regression coefficients $A = X' X^{+}$.
600
612
601
613
To construct a DMD, we deploy the following steps:
602
614
603
-
* Compute the singular value decomposition
604
-
605
-
$$
606
-
X = U \Sigma V^T
607
-
$$
608
615
609
-
where $U$ is $m \times r$, $\Sigma$ is an $r \times r$ diagonal matrix, and $V^T$ is an $r \times \tilde n$ matrix.
610
-
611
-
612
-
* Notice that (though it would be costly), we could compute $A$ by solving
616
+
* As described above, though it would be costly, we could compute $A$ by solving
613
617
614
618
$$
615
619
A = X' V \Sigma^{-1} U^T
616
-
$$
620
+
$$ (eq:bigAformula)
617
621
618
622
But we won't do that.
619
623
620
-
Instead we'll proceed as follows.
621
-
622
-
Note that since, $X' = A U \Sigma V^T$, we know that
624
+
The matrix $A$ is $m \times m$.
625
+
623
626
627
+
We'll the instead work with a reduced-order system of dimension $\tilde r$ by forming an $\tilde r \times \tilde r$ transition matrix
628
+
$\tilde A$ defined by
629
+
624
630
$$
625
-
A U = X' V \Sigma^{-1}
631
+
\tilde A = \tilde U^T A \tilde U
632
+
$$ (eq:tildeA_1)
633
+
634
+
The $\tilde A$ matrix governs the dynamics of the $\tilde r \times 1$ vector $\tilde x_t $
635
+
according to
636
+
637
+
$$
638
+
\tilde x_{t+1} = \tilde A \tilde x_t
626
639
$$
627
-
628
-
so that
629
-
640
+
641
+
where an approximation to the original $m \times 1$ vector $x_t$ can be acquired from
642
+
643
+
$$
644
+
x_t = \tilde U \tilde x_t
630
645
$$
631
-
U^T X' V \Sigma^{-1} = U^T A U \equiv \tilde A
646
+
647
+
From equation {eq}`eq:tildeA_1` and {eq}`eq:bigAformula` it follows that
648
+
649
+
650
+
$$
651
+
\tilde A = \tilde U^T X' \tilde V \Sigma^{-1}
632
652
$$ (eq:tildeAform)
653
+
654
+
633
655
634
-
* At this point, we deploy a reduced-dimension version of formula {eq}`eq:tildeAform} by
635
-
* using only the columns of $U$ that correspond to the $\tilde r$ largest singular values.
636
656
637
-
Tu et al. {cite}`tu_Rowley` verify that eigenvalues and eigenvectors of $\tilde A$ equal the leading eigenvalues and associated eigenvectors of $A$.
657
+
* Tu et al. {cite}`tu_Rowley` verify that eigenvalues and eigenvectors of $\tilde A$ equal the leading eigenvalues and associated eigenvectors of $A$.
638
658
639
-
* Construct an eigencomposition of $\tilde A$ that satisfies
659
+
* Construct an eigencomposition of $\tilde A$
640
660
641
661
$$
642
662
\tilde A W = W \Lambda
@@ -649,7 +669,9 @@ To construct a DMD, we deploy the following steps:
649
669
650
670
$$
651
671
\Phi = X' V \Sigma^{-1} W
652
-
$$
672
+
$$ (eq:Phiformula)
673
+
674
+
653
675
654
676
Let $\Phi^{+}$ be a generalized inverse of $\Phi$; $\Phi^{+}$ is an $\tilde r \times m$ matrix.
655
677
@@ -676,6 +698,21 @@ $$
676
698
$$
677
699
678
700
701
+
### Useful Connections
702
+
703
+
From formula {eq}`eq:Phiformula`, notice that
704
+
705
+
$$
706
+
\begin{aligned}
707
+
A \Phi & = (X' \tilde V \tilde \Sigma^{-1} \tilde U^T) (X' \tilde V \tilde \Sigma^{-1} W) \cr
708
+
& = X' \tilde V \Sigma^{-1} \tilde A W \cr
709
+
& = X' \tilde V \tilde \Sigma^{-1} W \Lambda \cr
710
+
& = \Phi \Lambda
711
+
\end{aligned}
712
+
$$
713
+
714
+
715
+
679
716
## Reduced-order VAR
680
717
681
718
DMD is a natural tool for estimating a **reduced order vector autoregression**,
0 commit comments