@@ -102,7 +102,8 @@ We'll need the following imports:
102102import matplotlib.pyplot as plt
103103plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
104104import numpy as np
105- from sympy import *
105+ from sympy import (Symbol, symbols, Eq, nsolve, sqrt, cos, sin, simplify,
106+ init_printing, integrate)
106107```
107108
108109### An Example
@@ -491,11 +492,38 @@ integrate(cos(ω) * sin(ω), (ω, -π, π))
491492We invite the reader to verify analytically and with the `sympy` package the following two equalities:
492493
493494$$
494- \int_{-\pi}^{\pi} \cos (\omega)^2 \, d\omega = \frac{\pi}{2}
495+ \int_{-\pi}^{\pi} \cos (\omega)^2 \, d\omega = \pi
495496$$
496497
497498$$
498- \int_{-\pi}^{\pi} \sin (\omega)^2 \, d\omega = \frac{\pi}{2}
499+ \int_{-\pi}^{\pi} \sin (\omega)^2 \, d\omega = \pi
499500$$
501+ ```
502+
503+ ``` {solution-start} complex_ex1
504+ :class: dropdown
505+ ```
506+
507+ Let's import symbolic $\pi$ from ` sympy `
508+
509+ ``` {code-cell} ipython3
510+ # Import symbolic π from sympy
511+ from sympy import pi
512+ ```
513+
514+ ``` {code-cell} ipython3
515+ print('The analytical solution for the integral of cos(ω)**2 \
516+ from -π to π is:')
517+
518+ integrate(cos(ω)**2, (ω, -pi, pi))
519+ ```
520+
521+ ``` {code-cell} ipython3
522+ print('The analytical solution for the integral of sin(ω)**2 \
523+ from -π to π is:')
524+
525+ integrate(sin(ω)**2, (ω, -pi, pi))
526+ ```
500527
528+ ``` {solution-end}
501529```
0 commit comments