Skip to content

Commit 9b3377a

Browse files
Tom's second edits of svd lecture, April 19
1 parent 9324f9c commit 9b3377a

File tree

1 file changed

+71
-29
lines changed

1 file changed

+71
-29
lines changed

lectures/svd_intro.md

Lines changed: 71 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -1001,7 +1001,7 @@ In effect,
10011001
10021002
$$
10031003
\Phi_s = UW
1004-
$$
1004+
$$ (eq:Phisfull)
10051005
10061006
and represented equation {eq}`eq:DSSEbookrepr` as
10071007
@@ -1015,48 +1015,101 @@ DMD **projected nodes**.
10151015
10161016
10171017
1018-
We turn next to an alternative representation suggested by Tu et al. {cite}`tu_Rowley`.
1018+
We turn next to an alternative representation suggested by Tu et al. {cite}`tu_Rowley`, one that is more appropriate to use when, as in practice is typically the case, we use a reduced SVD.
10191019
10201020
10211021
10221022
10231023
## Representation 3
10241024
1025-
1026-
As we did with representation 2, it is useful to construct an eigendecomposition of the $m \times m$ transition matrix $\tilde A$
1027-
according the equation {eq}`eq:tildeAeigen`.
1028-
1029-
10301025
Departing from the procedures used to construct Representations 1 and 2, each of which deployed a **full** SVD, we now use a **reduced** SVD.
10311026
1032-
As above, we let $p \leq \textrm{min}(m,n)$ be the rank of $X$ and consider a **reduced** SVD
1027+
Again, we let $p \leq \textrm{min}(m,n)$ be the rank of $X$.
1028+
1029+
Construct a **reduced** SVD
10331030
10341031
$$
1035-
X = U \Sigma V^T
1032+
X = \tilde U \tilde \Sigma \tilde V^T,
10361033
$$
10371034
10381035
where now $U$ is $m \times p$ and $\Sigma$ is $ p \times p$ and $V^T$ is $p \times n$.
10391036
1037+
Our minimum-norm least-squares estimator approximator of $A$ now has representation
1038+
1039+
$$
1040+
\hat A = X' \tilde V \tilde \Sigma^{-1} \tilde U^T
1041+
$$
1042+
1043+
1044+
Paralleling a step in Representation 1, define a transition matrix for a rotated $p \times 1$ state $\tilde b_t$ by
10401045
1046+
$$
1047+
\tilde A =\tilde U^T \hat A \tilde U
1048+
$$ (eq:Atildered)
1049+
1050+
Because we are now working with a reduced SVD, so that $\tilde U \tilde U^T \neq I$, we can't recover $\hat A$ from $ \hat A \neq \tilde U \tilde A \tilde U^T$.
1051+
1052+
1053+
Nevertheless, hoping for the best, we trudge on and construct an eigendecomposition of what is now a
1054+
$p \times p$ matrix $\tilde A$:
1055+
1056+
$$
1057+
\tilde A = W \Lambda W^{-1}
1058+
$$ (eq:tildeAeigenred)
1059+
1060+
1061+
Mimicking our procedure in Representation 2, we cross our fingers and compute the $m \times p$ matrix
1062+
1063+
$$
1064+
\tilde \Phi_s = \tilde U W
1065+
$$ (eq:Phisred)
10411066
1067+
that corresponds to {eq}`eq:Phisfull` for a full SVD.
10421068
1043-
Construct an $m \times p$ matrix
1069+
At this point, it is interesting to compute $\hat A \tilde \Phi_s$:
1070+
1071+
$$
1072+
\begin{aligned}
1073+
\hat A \tilde \Phi_s & = (X' \tilde V \tilde \Sigma^{-1} \tilde U^T) (\tilde U W) \\
1074+
& = X' \tilde V \tilde \Sigma^{-1} W \\
1075+
& \neq (\tilde U W) \Lambda \\
1076+
& = \tilde \Phi_s \Lambda
1077+
\end{aligned}
1078+
$$
1079+
1080+
That
1081+
$ \hat A \tilde \Phi_s \neq \tilde \Phi_s \Lambda $ means, that unlike the corresponding situation in Representation 2, columns of $\tilde \Phi_s = \tilde U W$
1082+
are **not** eigenvectors of $\hat A$ corresponding to eigenvalues $\Lambda$.
1083+
1084+
But in the quest for eigenvectors of $\hat A$ that we can compute with a reduced SVD, let's define
1085+
1086+
$$
1087+
\Phi \equiv \hat A \tilde \Phi_s = X' \tilde V \tilde \Sigma^{-1} W
1088+
$$
1089+
1090+
It turns out that columns of $\Phi$ **are** eigenvectors of $\hat A$,
1091+
a consequence of a result established by Tu et al. {cite}`tu_Rowley`.
1092+
1093+
To present their result, for convenience we'll drop the tilde $\tilde \cdot$ for $U, V,$ and $\Sigma$
1094+
and adopt the understanding that they are computed with a reduced SVD.
1095+
1096+
1097+
Thus, we now use the notation
1098+
that ths $m \times p$ matrix is defined as
10441099
10451100
$$
10461101
\Phi = X' V \Sigma^{-1} W
10471102
$$ (eq:Phiformula)
10481103
10491104
10501105
1051-
Tu et al. {cite}`tu_Rowley` established the following
1052-
10531106
**Proposition** The $p$ columns of $\Phi$ are eigenvectors of $\check A$.
10541107
10551108
**Proof:** From formula {eq}`eq:Phiformula` we have
10561109
10571110
$$
10581111
\begin{aligned}
1059-
\check A \Phi & = (X' V \Sigma^{-1} U^T) (X' V \Sigma^{-1} W) \cr
1112+
\hat A \Phi & = (X' V \Sigma^{-1} U^T) (X' V \Sigma^{-1} W) \cr
10601113
& = X' V \Sigma^{-1} \tilde A W \cr
10611114
& = X' V \Sigma^{-1} W \Lambda \cr
10621115
& = \Phi \Lambda
@@ -1066,34 +1119,23 @@ $$
10661119
Thus, we have deduced that
10671120
10681121
$$
1069-
\check A \Phi = \Phi \Lambda
1122+
\hat A \Phi = \Phi \Lambda
10701123
$$ (eq:APhiLambda)
10711124
1072-
Let $\phi_i$ be the the $i$the column of $\Phi$ and $\lambda_i$ be the corresponding $i$ eigenvalue of $\tilde A$ from decomposition {eq}`eq:tildeAeigen`.
1125+
Let $\phi_i$ be the the $i$the column of $\Phi$ and $\lambda_i$ be the corresponding $i$ eigenvalue of $\tilde A$ from decomposition {eq}`eq:tildeAeigenred`.
10731126
10741127
Writing out the $m \times 1$ vectors on both sides of equation {eq}`eq:APhiLambda` and equating them gives
10751128
10761129
10771130
$$
1078-
\check A \phi_i = \lambda_i \phi_i .
1131+
\hat A \phi_i = \lambda_i \phi_i .
10791132
$$
10801133
1081-
Thus, $\phi_i$ is an eigenvector of $A$ that corresponds to eigenvalue $\lambda_i$ of $\check A$.
1134+
Thus, $\phi_i$ is an eigenvector of $\hat A$ that corresponds to eigenvalue $\lambda_i$ of $\tilde A$.
10821135
10831136
This concludes the proof.
10841137
10851138
1086-
We also have the following
1087-
1088-
**Corollary:** Assume that the integer $r$ satisfies $1 \leq r < p$. As a counterpart of $\tilde A$ defined above in equation {eq}`eq:Atilde0` with a full SVD, instead use a reduced SVD to redefine $\tilde A$ as the following $r \times r$ counterpart
1089-
1090-
$$
1091-
\tilde A = \tilde U^T \hat A \tilde U
1092-
$$ (eq:Atilde10)
1093-
1094-
where in equation {eq}`eq:Atilde10` $\tilde U$ is now the $m \times r$ matrix consisting of the eigevectors of $X X^T$ corresponding to the $r$
1095-
largest singular values of $X$.
1096-
The conclusions of the proposition remain true when we replace $U$ by $\tilde U$.
10971139
10981140
10991141
Also see {cite}`DDSE_book` (p. 238)
@@ -1123,7 +1165,7 @@ X_t & = \Phi \check b_t
11231165
$$
11241166
11251167
1126-
But there is a better way to compute the $r \times 1$ vector $\check b_t$
1168+
But there is a better way to compute the $p \times 1$ vector $\check b_t$
11271169
11281170
In particular, the following argument from {cite}`DDSE_book` (page 240) provides a computationally efficient way
11291171
to compute $\check b_t$.

0 commit comments

Comments
 (0)