You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -666,34 +660,25 @@ the implications for the wealth distribution.
666
660
Let's look at the wealth dynamics of an individual household using numba.
667
661
668
662
```{code-cell} ipython3
669
-
---
670
-
tags: [hide-input]
671
-
---
672
663
wdy = WealthDynamics()
673
664
674
665
ts_length = 200
675
666
```
676
667
677
668
```{code-cell} ipython3
678
-
---
679
-
tags: [hide-input]
680
-
---
681
-
%%time
682
-
669
+
qe.tic()
683
670
w = wealth_time_series(wdy, wdy.y_mean, ts_length)
671
+
glue("wealth_time_series_time_1", qe.toc())
684
672
```
685
673
686
674
```{code-cell} ipython3
687
-
---
688
-
tags: [hide-input]
689
-
---
690
-
%%time
691
-
675
+
qe.tic()
692
676
# Check the time for 2nd execution
693
677
w = wealth_time_series(wdy, wdy.y_mean, ts_length)
678
+
glue("wealth_time_series_time_2", qe.toc())
694
679
```
695
680
696
-
Notice the time difference between the `wealth_time_series`and `wealth_time_series_jax`
681
+
Notice the time difference between the `wealth_time_series`: {glue:}`wealth_time_series_time_1`and `wealth_time_series_jax`: {glue:}`wealth_time_series_jax_time_1`
0 commit comments