@@ -39,11 +39,11 @@ Such a problem is also sometimes called an optimal linear regulator problem.
3939
4040A Lagrangian formulation
4141
42- * carries insights about connections between stability and optimality
42+ * carries insights about connections between stability and optimality
4343
44- * is the basis for fast algorithms for solving Riccati equations
44+ * is the basis for fast algorithms for solving Riccati equations
4545
46- * opens the way to constructing solutions of dynamic systems that don't come directly from an intertemporal optimization problem
46+ * opens the way to constructing solutions of dynamic systems that don't come directly from an intertemporal optimization problem
4747
4848A key tool in this lecture is the concept of an $n \times n$ ** symplectic** matrix.
4949
7878
7979subject to $x_ {t+1}=Ax_t+Bu_t$, where $x_0$ is a given initial state vector.
8080
81- Here $x_t$ is an $(n\times 1)$ vector of state variables, $u_t$ is a $(k\times 1)$
81+ Here $x_t$ is an $(n\times 1)$ vector of state variables, $u_t$ is a $(k\times 1)$
8282vector of controls, $R$ is a positive semidefinite symmetric matrix,
8383$Q$ is a positive definite symmetric matrix, $A$ is an $(n\times n)$
8484matrix, and $B$ is an $(n\times k)$ matrix.
116116or
117117
118118$$
119- u=-Fx,
119+ u=-Fx,
120120$$
121+
121122where
122123
123124$$
@@ -139,7 +140,7 @@ But only one of them is positive definite.
139140
140141The positive define solution is associated with the maximum of our problem.
141142
142- It expresses the matrix $P$ as an implicit function of the matrices
143+ It expresses the matrix $P$ as an implicit function of the matrices
143144$R,Q,A,B$.
144145
145146Notice that the **gradient of the value function** is
@@ -168,7 +169,9 @@ where $2 \mu_{t+1}$ is a vector of Lagrange multipliers on the time $t$ transiti
168169First-order conditions for maximization with respect to $\{u_t,x_{t+1}\}_{t=0}^\infty$ are
169170
170171$$
171- \eqalign{2 Q u_t &+ 2B^\prime \mu_ {t+1} = 0 \ ,\ t \geq 0 \cr \mu_t &= R x_t + A^\prime \mu_ {t+1}\ ,\ t\geq 1.\cr}
172+ \begin{aligned}
173+ 2 Q u_t &+ 2B^\prime \mu_ {t+1} = 0 \ ,\ t \geq 0 \cr \mu_t &= R x_t + A^\prime \mu_ {t+1}\ ,\ t\geq 1.\cr
174+ \end{aligned}
172175$$ (eq2)
173176
174177Define $\mu_0$ to be a vector of shadow prices of $x_0$ and apply an envelope condition to {eq}`eq1`
@@ -183,7 +186,7 @@ which is a time $t=0 $ counterpart to the second equation of system {eq}`eq2`.
183186An important fact is that
184187
185188$$
186- \mu_ {t+1} = P x_ {t+1}
189+ \mu_ {t+1} = P x_ {t+1}
187190$$ (eqn:muPx)
188191
189192where $P$ is a positive define matrix that solves the algebraic Riccati equation {eq}`riccati`.
@@ -196,36 +199,36 @@ corresponds to the **state** vector $x_t$.
196199
197200It is useful to proceed with the following steps:
198201
199- * solve the first equation of {eq}`eq2` for $u_t$ in terms of $\mu_{t+1}$.
202+ * solve the first equation of {eq}`eq2` for $u_t$ in terms of $\mu_{t+1}$.
200203
201- * substitute the result into the law of motion $x_{t+1} = A x_t + B u_t$.
202-
203- * arrange the resulting equation and the second equation of {eq}`eq2` into the form
204+ * substitute the result into the law of motion $x_{t+1} = A x_t + B u_t$.
205+
206+ * arrange the resulting equation and the second equation of {eq}`eq2` into the form
204207
205208$$
206- L\ \pmatrix{ x_ {t+1}\cr \mu_ {t+1}\cr}\ = \ N\ \pmatrix{ x_t\cr \mu_t\cr}\
209+ L\ \begin{pmatrix} x_ {t+1}\cr \mu_ {t+1}\cr\end{pmatrix }\ = \ N\ \begin{pmatrix} x_t\cr \mu_t\cr\end{pmatrix }\
207210,\ t \geq 0,
208211$$ (eq:systosolve)
209212
210213where
211214
212215$$
213- L = \ \pmatrix{ I & BQ^{-1} B^\prime \cr 0 & A^\prime\cr}, \quad N = \
214- \pmatrix{ A & 0\cr -R & I\cr}.
216+ L = \ \begin{pmatrix} I & BQ^{-1} B^\prime \cr 0 & A^\prime\cr\end{pmatrix }, \quad N = \
217+ \begin{pmatrix} A & 0\cr -R & I\cr\end{pmatrix }.
215218$$
216219
217220When $L$ is of full rank (i.e., when $A$ is of full rank), we can write
218221system {eq}`eq:systosolve` as
219222
220223$$
221- \pmatrix{ x_ {t+1}\cr \mu_ {t+1}\cr}\ = M\ \pmatrix{ x_t\cr\mu_t\cr}
224+ \begin{pmatrix} x_ {t+1}\cr \mu_ {t+1}\cr\end{pmatrix }\ = M\ \begin{pmatrix} x_t\cr\mu_t\cr\end{pmatrix }
222225$$ (eq4orig)
223226
224227where
225228
226229$$
227- M\equiv L^{-1} N = \pmatrix{ A+B Q^{-1} B^\prime A^{\prime-1}R &
228- -B Q^{-1} B^\prime A^{\prime-1}\cr -A^{\prime -1} R & A^{\prime -1}\cr}.
230+ M\equiv L^{-1} N = \begin{pmatrix} A+B Q^{-1} B^\prime A^{\prime-1}R &
231+ -B Q^{-1} B^\prime A^{\prime-1}\cr -A^{\prime -1} R & A^{\prime -1}\cr\end{pmatrix }.
229232$$ (Mdefn)
230233
231234+++
@@ -236,15 +239,16 @@ $$ (Mdefn)
236239We seek to solve the difference equation system {eq}`eq4orig` for a sequence $\{x_t\}_{t=0}^\infty$
237240that satisfies
238241
239- * an initial condition for $x_0$
240- * a terminal condition $\lim_{t \rightarrow +\infty} x_t =0$
242+ * an initial condition for $x_0$
243+ * a terminal condition $\lim_{t \rightarrow +\infty} x_t =0$
241244
242245This terminal condition reflects our desire for a **stable** solution, one that does not diverge as $t \rightarrow \infty$.
243246
244247
245248We inherit our wish for stability of the $\{x_t\}$ sequence from a desire to maximize
246249
247- $$ -\sum_{t=0}^\infty \bigl[ x_t ' R x_t + u_t' Q u_t \bigr],
250+ $$
251+ -\sum_ {t=0}^\infty \bigl[ x_t ' R x_t + u_t' Q u_t \bigr] ,
248252$$
249253
250254which requires that $x_t' R x_t$ converge to zero as $t \rightarrow + \infty$.
@@ -258,7 +262,7 @@ To proceed, we study properties of the $(2n \times 2n)$ matrix $M$ defined in {e
258262It helps to introduce a $(2n \times 2n)$ matrix
259263
260264$$
261- J= \pmatrix{ 0 & -I_n\cr I_n & 0\cr}.
265+ J = \begin{pmatrix} 0 & -I_n\cr I_n & 0\cr\end{pmatrix }.
262266$$
263267
264268The rank of $J$ is $2n$.
@@ -283,11 +287,11 @@ by a **similarity transformation**.
283287
284288For square matrices, recall that
285289
286- * similar matrices share eigenvalues
287-
288- * eigenvalues of the inverse of a matrix are inverses of eigenvalues of the matrix
289-
290- * a matrix and its transpose share eigenvalues
290+ * similar matrices share eigenvalues
291+
292+ * eigenvalues of the inverse of a matrix are inverses of eigenvalues of the matrix
293+
294+ * a matrix and its transpose share eigenvalues
291295
292296It then follows from equation {eq}`eq4` that
293297the eigenvalues of $M$ occur in reciprocal pairs: if $\lambda$ is an
299303y_ {t+1} = M y_t
300304$$ (eq658)
301305
302- where $y_t = \pmatrix{ x_t\cr \mu_t\cr}$.
306+ where $y_t = \begin{pmatrix} x_t\cr \mu_t\cr\end{pmatrix }$.
303307
304308Consider a **triangularization** of $M$
305309
306310$$
307- V^{-1} M V= \pmatrix{ W_ {11} & W_ {12} \cr 0 & W_ {22}\cr}
311+ V^{-1} M V= \begin{pmatrix} W_ {11} & W_ {12} \cr 0 & W_ {22}\cr\end{pmatrix }
308312$$ (eqn:triangledecomp)
309313
310314where
@@ -329,7 +333,7 @@ A solution of equation {eq}`eq659` for arbitrary initial condition $y_0$ is
329333evidently
330334
331335$$
332- y_ {t} = V \left[ \matrix{ W^t_ {11} & W_ {12,t}\cr 0 & W^t_ {22}\cr}\right]
336+ y_ {t} = V \left[ \begin{matrix} W^t_ {11} & W_ {12,t}\cr 0 & W^t_ {22}\cr\end{matrix }\right]
333337\ V^{-1} y_0
334338$$ (eq6510)
335339
@@ -344,9 +348,9 @@ and where $W^t_{ii}$ is $W_{ii}$ raised to the $t$th power.
344348Write equation {eq}`eq6510` as
345349
346350$$
347- \pmatrix{ y^\ast_ {1t}\cr y^\ast_ {2t}\cr}\ =\ \left[ \matrix{ W^t_ {11} &
348- W_ {12, t}\cr 0 & W^t_ {22}\cr}\right] \quad \pmatrix{ y^\ast_ {10}\cr
349- y^\ast_ {20}\cr}
351+ \begin{pmatrix} y^\ast_ {1t}\cr y^\ast_ {2t}\cr\end{pmatrix }\ =\ \left[ \begin{matrix} W^t_ {11} &
352+ W_ {12, t}\cr 0 & W^t_ {22}\cr\end{matrix }\right] \quad \begin{pmatrix} y^\ast_ {10}\cr
353+ y^\ast_ {20}\cr\end{pmatrix }
350354$$
351355
352356where $y^\ast_t = V^{-1} y_t$, and in particular where
@@ -385,7 +389,7 @@ But notice that because $(V^{21}\ V^{22})$ is the second row block of
385389the inverse of $V,$ it follows that
386390
387391$$
388- (V^{21} \ V^{22})\quad \pmatrix{ V_ {11}\cr V_ {21}\cr} = 0
392+ (V^{21} \ V^{22})\quad \begin{pmatrix} V_ {11}\cr V_ {21}\cr\end{pmatrix } = 0
389393$$
390394
391395which implies
@@ -514,8 +518,8 @@ eigvals
514518
515519When we apply Schur decomposition such that $M=V W V^{-1}$, we want
516520
517- * the upper left block of $W$, $W_{11}$, to have all of its eigenvalues less than 1 in modulus, and
518- * the lower right block $W_{22}$ to have eigenvalues that exceed 1 in modulus.
521+ * the upper left block of $W$, $W_{11}$, to have all of its eigenvalues less than 1 in modulus, and
522+ * the lower right block $W_{22}$ to have eigenvalues that exceed 1 in modulus.
519523
520524To get what we want, let's define a sorting function that tells `scipy.schur` to sort the corresponding eigenvalues with modulus smaller than 1 to the upper left.
521525
@@ -786,7 +790,9 @@ First-order conditions for maximization with respect
786790to $\{u_t,x_{t+1}\}_{t=0}^\infty$ are
787791
788792$$
789- \eqalign{2 Q u_t &+ 2 \beta B^\prime \mu_ {t+1} = 0 \ ,\ t \geq 0 \cr \mu_t &= R x_t + \beta A^\prime \mu_ {t+1}\ ,\ t\geq 1.\cr}
793+ \begin{aligned}
794+ 2 Q u_t &+ 2 \beta B^\prime \mu_ {t+1} = 0 \ ,\ t \geq 0 \cr \mu_t &= R x_t + \beta A^\prime \mu_ {t+1}\ ,\ t\geq 1.\cr
795+ \end{aligned}
790796$$ (eq662)
791797
792798Define $2 \mu_0$ to be the vector of shadow prices of $x_0$ and apply an envelope condition to
@@ -802,12 +808,12 @@ Proceeding as we did above with the undiscounted system {eq}`eq2`, we can rear
802808system
803809
804810$$
805- \left[ \matrix{ I & \beta B Q^{-1} B' \cr
806- 0 & \beta A' }\right]
807- \left[ \matrix{ x_ {t+1} \cr \mu_ {t+1} }\right] =
808- \left[ \matrix{ A & 0 \cr
809- - R & I }\right]
810- \left[ \matrix{ x_t \cr \mu_t }\right]
811+ \left[ \begin{matrix} I & \beta B Q^{-1} B' \cr
812+ 0 & \beta A' \end{matrix }\right]
813+ \left[ \begin{matrix} x_ {t+1} \cr \mu_ {t+1} \end{matrix }\right] =
814+ \left[ \begin{matrix} A & 0 \cr
815+ - R & I \end{matrix }\right]
816+ \left[ \begin{matrix} x_t \cr \mu_t \end{matrix }\right]
811817$$ (eq663)
812818
813819which in the special case that $\beta = 1$ agrees with equation {eq}`eq2`, as expected.
@@ -889,8 +895,4 @@ $$ (eq667)
889895
890896where we must require that $F$ obeys equation {eq}`eqn:optimalFformula`.
891897
892- Equations {eq}`eq666` and {eq}`eq667` provide different perspectives on the optimal value function.
893-
894- ```{code-cell} ipython3
895-
896- ```
898+ Equations {eq}`eq666` and {eq}`eq667` provide different perspectives on the optimal value function.
0 commit comments