@@ -224,7 +224,7 @@ for which $f_{i} \in [0,1]$ for each $i$ and $\sum_{i=0}^{I-1}f_i=1$.
224224This vector defines a **probability mass function**.
225225
226226The distribution {eq}`eq:discretedist`
227- has **parameters** $\{f_{i}\}_{i=0,1,... ,I-2}$ since $f_{I-1} = 1-\sum_{i=0}^{I-2}f_{i}$.
227+ has **parameters** $\{f_{i}\}_{i=0,1, \cdots ,I-2}$ since $f_{I-1} = 1-\sum_{i=0}^{I-2}f_{i}$.
228228
229229
230230These parameters pin down the shape of the distribution.
@@ -660,7 +660,7 @@ plt.show()
660660## Some Discrete Probability Distributions
661661
662662
663- Let's write some Python code to compute means and variances of soem univariate random variables.
663+ Let's write some Python code to compute means and variances of some univariate random variables.
664664
665665We'll use our code to
666666
715715\textrm{Prob}\{ X=d\} =\log _ {10}(d+1)-\log _ {10}(d)=\log _ {10}\left(1+\frac{1}{d}\right)
716716$$
717717
718- where $d\in\{1,2,... ,9\}$ can be thought of as a **first digit** in a sequence of digits.
718+ where $d\in\{1,2,\cdots ,9\}$ can be thought of as a **first digit** in a sequence of digits.
719719
720720This is a well defined discrete distribution since we can verify that probabilities are nonnegative and sum to $1$.
721721
@@ -1531,8 +1531,8 @@ Start with a joint distribution
15311531$$
15321532\begin{aligned}
15331533f_{ij} & =\textrm{Prob}\{X=i,Y=j\}\\
1534- i& =0,…… ,I-1\\
1535- j& =0,…… ,J-1\\
1534+ i& =0, \cdots ,I-1\\
1535+ j& =0, \cdots ,J-1\\
15361536& \text{stacked to an }I×J\text{ matrix}\\
15371537& e.g. \quad I=1, J=1
15381538\end{aligned}
@@ -1561,8 +1561,8 @@ Let's start with marginal distributions
15611561
15621562$$
15631563\begin{aligned}
1564- \textrm{\textrm{ Prob}} \{X=i\} &= \sum_{j}f_{ij}=\mu_{i}, i=0,……, I-1\\
1565- \textrm{\textrm{ Prob}} \{Y=j\}&= \sum_{j}f_{ij}=\nu_{j}, j=0,……, J-1
1564+ \text{ Prob} \{X=i\} &= \sum_{j}f_{ij}=\mu_{i}, i=0, \cdots, I-1\\
1565+ \text{ Prob} \{Y=j\}&= \sum_{j}f_{ij}=\nu_{j}, j=0, \cdots, J-1
15661566\end{aligned}
15671567$$
15681568
@@ -1574,11 +1574,11 @@ Consider the following bivariate example.
15741574
15751575$$
15761576\begin{aligned}
1577- {\textrm {Prob}} \{X=0\}= & 1-q =\mu_{0}\\
1578- {\textrm {Prob}} \{X=1\}=& q =\mu_{1}\\
1579- {\textrm {Prob}} \{Y=0\}=& 1-r =\nu_{0}\\
1580- {\textrm {Prob}} \{Y=1\}= & r =\nu_{1}\\
1581- \textrm {where }0≤q<r≤ 1
1577+ \text {Prob} \{X=0\}= & 1-q =\mu_{0}\\
1578+ \text {Prob} \{X=1\}=& q =\mu_{1}\\
1579+ \text {Prob} \{Y=0\}=& 1-r =\nu_{0}\\
1580+ \text {Prob} \{Y=1\}= & r =\nu_{1}\\
1581+ \text {where } 0 \leq q < r \leq 1
15821582\end{aligned}
15831583$$
15841584
@@ -1677,10 +1677,10 @@ For example, consider two random variables $X, Y$ with distributions
16771677
16781678$$
16791679\begin{aligned}
1680- \textrm{\textrm{ Prob} }(X = 0)& = 0.6,\\
1681- \textrm{\textrm{ Prob} }(X = 1) &= 0.4,\\
1682- \textrm{\textrm{ Prob} }(Y = 0)& = 0.3,\\
1683- \textrm{\textrm{ Prob} }(Y = 1) &= 0.7,
1680+ \text{ Prob}(X = 0)& = 0.6,\\
1681+ \text{ Prob}(X = 1) &= 0.4,\\
1682+ \text{ Prob}(Y = 0)& = 0.3,\\
1683+ \text{ Prob}(Y = 1) &= 0.7,
16841684\end{aligned}
16851685$$
16861686
@@ -1729,7 +1729,7 @@ ymtb.add_row([1, r_hat])
17291729print(ymtb)
17301730```
17311731
1732- Let's now take our two margingal distributions, one for $X$, the other for $Y$, and construct two distinct couplings.
1732+ Let's now take our two marginal distributions, one for $X$, the other for $Y$, and construct two distinct couplings.
17331733
17341734For the first joint distribution:
17351735
@@ -1906,7 +1906,7 @@ Suppose that
19061906
19071907$$
19081908\begin{aligned}
1909- \textrm{\textrm{ Prob}} \{X(0)=i,X(1)=j\} &=f_{ij}≥0,i=0,…… ,I-1\\
1909+ \text{ Prob} \{X(0)=i,X(1)=j\} &=f_{ij}≥0,i=0,\cdots ,I-1\\
19101910\sum_{i}\sum_{j}f_{ij}&=1
19111911\end{aligned}
19121912$$
@@ -1915,7 +1915,7 @@ $f_{ij} $ is a joint distribution over $[X(0), X(1)]$.
19151915
19161916A conditional distribution is
19171917
1918- $$ \textrm{\textrm{ Prob}} \{X(1)=j|X(0)=i\}= \frac{f_{ij}}{ \sum_{j}f_{ij}} $$
1918+ $$ \text{ Prob} \{X(1)=j|X(0)=i\}= \frac{f_{ij}}{ \sum_{j}f_{ij}} $$
19191919
19201920** Remark:**
1921- - This is a key formula for a theory of optimally predict a time series.
1921+ - This is a key formula for a theory of optimally predicting a time series.
0 commit comments