You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lectures/svd_intro.md
+30-24Lines changed: 30 additions & 24 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -993,8 +993,13 @@ $$
993
993
\overline X_{t+1} = \Phi_s \Lambda^t \Phi_s^+ X_1
994
994
$$ (eq:schmidrep)
995
995
996
+
Components of the basis vector $ \hat b_t = W^{-1} U^T X_t \equiv \Phi_s^+$ are often called DMD **modes**, or sometimes also
997
+
DMD **projected nodes**.
998
+
999
+
An alternative definition of DMD notes is motivate by the following observation.
1000
+
996
1001
A peculiar feature of representation {eq}`eq:schmidrep` is that while the diagonal components of $\Lambda$ are square roots of singular
997
-
values of $\check A$, the columns of $\Phi_s$ are **not** eigenvectors of corresponding eigenvectors of $\check A$.
1002
+
values of $\check A$, the columns of $\Phi_s$ are **not** eigenvectors corresponding to eigenvalues of $\check A$.
998
1003
999
1004
This feature led Tu et al. {cite}`tu_Rowley` to suggest an alternative representation that replaces $\Phi_s$ with another
1000
1005
$m \times p$ matrix whose columns are eigenvectors of $\check A$.
@@ -1011,7 +1016,7 @@ As we did with representation 2, it is useful to construct an eigencomposition
1011
1016
according the equation {eq}`eq:tildeAeigen`.
1012
1017
1013
1018
1014
-
Now construct the $m \times p$ matrix
1019
+
Now where $ 1 \leq r \leq p$, construct an $m \times r$ matrix
1015
1020
1016
1021
$$
1017
1022
\Phi = X' V \Sigma^{-1} W
@@ -1021,7 +1026,7 @@ $$ (eq:Phiformula)
1021
1026
1022
1027
Tu et al. {cite}`tu_Rowley` established the following
1023
1028
1024
-
**Proposition** The $p$ columns of $\Phi$ are eigenvectors of $\check A$ that correspond to the largest $r$ eigenvalues of $A$.
1029
+
**Proposition** The $r$ columns of $\Phi$ are eigenvectors of $\check A$ that correspond to the largest $r$ eigenvalues of $A$.
1025
1030
1026
1031
**Proof:** From formula {eq}`eq:Phiformula` we have
1027
1032
@@ -1042,7 +1047,7 @@ $$ (eq:APhiLambda)
1042
1047
1043
1048
Let $\phi_i$ be the the $i$the column of $\Phi$ and $\lambda_i$ be the corresponding $i$ eigenvalue of $\tilde A$ from decomposition {eq}`eq:tildeAeigen`.
1044
1049
1045
-
Writing out the $m \times p$ vectors on both sides of equation {eq}`eq:APhiLambda` and equating them gives
1050
+
Writing out the $m \times 1$ vectors on both sides of equation {eq}`eq:APhiLambda` and equating them gives
1046
1051
1047
1052
1048
1053
$$
@@ -1065,10 +1070,7 @@ $$ (eq:Atilde10)
1065
1070
1066
1071
where in equation {eq}`eq:Atilde10` $U$ is now the $m \times r$ matrix consisting of the eigevectors of $X X^T$ corresponding to the $r$
1067
1072
largest singular values of $X$.
1068
-
1069
-
**Beware:** We have **recycled** notation here by temporarily redefining $U$ as being just $r$ columns instead of $p$ columns as we have up to now.
1070
-
1071
-
The conclusions of the proposition follow with this altered definition of $U$.
1073
+
The conclusions of the proposition remain true with this altered definition of $U$. (**Beware:** We have **recycled** notation here by temporarily redefining $U$ as being just $r$ columns instead of $p$ columns as we have up to now.)
1072
1074
1073
1075
1074
1076
Also see {cite}`DDSE_book` (p. 238)
@@ -1098,7 +1100,7 @@ X_t & = \Phi \check b_t
1098
1100
$$
1099
1101
1100
1102
1101
-
There is a better way to compute the $p \times 1$ vector $\check b_t$
1103
+
There is a better way to compute the $r \times 1$ vector $\check b_t$
1102
1104
1103
1105
In particular, the following argument from {cite}`DDSE_book` (page 240) provides a computationally efficient way
1104
1106
to compute $\check b_t$.
@@ -1113,36 +1115,38 @@ $$
1113
1115
X_1 = \Phi \check b_1
1114
1116
$$ (eq:X1proj)
1115
1117
1116
-
where $\check b_1$ is a $p \times 1$ vector.
1118
+
where $\check b_1$ is an $r \times 1$ vector.
1117
1119
1118
-
Since $X_1 = U \tilde X_1$, it follows that
1120
+
Recall from representation 1 above that $X_1 = U \tilde b_1$, where $\tilde b_1$ is the time $1$ basis vector for representation 1.
1121
+
1122
+
It then follows that
1119
1123
1120
1124
$$
1121
-
U \tilde X_1 = X' V \Sigma^{-1} W b_1
1125
+
U \tilde b_1 = X' V \Sigma^{-1} W \check b_1
1122
1126
$$
1123
1127
1124
-
and
1128
+
and consequently
1125
1129
1126
1130
$$
1127
-
\tilde X_1 = U^T X' V \Sigma^{-1} W \check b_1
1131
+
\tilde b_1 = U^T X' V \Sigma^{-1} W \check b_1
1128
1132
$$
1129
1133
1130
1134
Since $ \tilde A = U^T X' V \Sigma^{-1}$, it follows that
1131
1135
1132
1136
$$
1133
-
\tilde X_1 = \tilde A W \check b_1
1137
+
\tilde b_1 = \tilde A W \check b_1
1134
1138
$$
1135
1139
1136
-
and therefore, by eigendecomposition {eq}`eq:tildeAeigen` of $\tilde A$, we have
1140
+
and therefore, by the eigendecomposition {eq}`eq:tildeAeigen` of $\tilde A$, we have
1137
1141
1138
1142
$$
1139
-
\tilde X_1 = W \Lambda \check b_1
1143
+
\tilde b_1 = W \Lambda \check b_1
1140
1144
$$
1141
1145
1142
-
Therefore,
1146
+
Consesquently,
1143
1147
1144
1148
$$
1145
-
\check b_1 = ( W \Lambda)^{-1} \tilde X_1
1149
+
\check b_1 = ( W \Lambda)^{-1} \tilde b_1
1146
1150
$$
1147
1151
1148
1152
or
@@ -1161,26 +1165,28 @@ $$
1161
1165
$$ (eq:bphieqn)
1162
1166
1163
1167
1164
-
Conditional on $X_t$, we can construct forecasts $\bar X_{t+j} $ of $X_{t+j}, j = 1, 2, \ldots, $ from
1168
+
Components of the basis vector $\check b_t = \Phi^+ X_t \equiv (W \Lambda)^{-1} U^T X_t$ are often called **exact** DMD nodes.
1169
+
1170
+
Conditional on $X_t$, we can construct forecasts $\overline X_{t+j} $ of $X_{t+j}, j = 1, 2, \ldots, $ from
1165
1171
either
1166
1172
1167
1173
$$
1168
-
\bar X_{t+j} = \Phi \Lambda^j \Phi^{+} X_t
1174
+
\overline X_{t+j} = \Phi \Lambda^j \Phi^{+} X_t
1169
1175
$$ (eq:checkXevoln)
1170
1176
1171
1177
1172
-
or the following equation
1178
+
or
1173
1179
1174
1180
$$
1175
-
\bar X_{t+j} = \Phi \Lambda^j (W \Lambda)^{-1} U^T X_t
1181
+
\overline X_{t+j} = \Phi \Lambda^j (W \Lambda)^{-1} U^T X_t
1176
1182
$$ (eq:checkXevoln2)
1177
1183
1178
1184
1179
1185
1180
1186
1181
1187
## Using Fewer Modes
1182
1188
1183
-
For the most part, the preceding formulas assume that we have retained all $p$ modes associated with the positive
1189
+
Some of the preceding formulas assume that we have retained all $p$ modes associated with the positive
1184
1190
singular values of $X$.
1185
1191
1186
1192
We can easily adapt all of the formulas to describe a situation in which we instead retain only
0 commit comments