Skip to content

Commit 4471731

Browse files
Tom's March 30 edits of svd lecture
1 parent f284bf3 commit 4471731

File tree

1 file changed

+30
-24
lines changed

1 file changed

+30
-24
lines changed

lectures/svd_intro.md

Lines changed: 30 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -993,8 +993,13 @@ $$
993993
\overline X_{t+1} = \Phi_s \Lambda^t \Phi_s^+ X_1
994994
$$ (eq:schmidrep)
995995
996+
Components of the basis vector $ \hat b_t = W^{-1} U^T X_t \equiv \Phi_s^+$ are often called DMD **modes**, or sometimes also
997+
DMD **projected nodes**.
998+
999+
An alternative definition of DMD notes is motivate by the following observation.
1000+
9961001
A peculiar feature of representation {eq}`eq:schmidrep` is that while the diagonal components of $\Lambda$ are square roots of singular
997-
values of $\check A$, the columns of $\Phi_s$ are **not** eigenvectors of corresponding eigenvectors of $\check A$.
1002+
values of $\check A$, the columns of $\Phi_s$ are **not** eigenvectors corresponding to eigenvalues of $\check A$.
9981003
9991004
This feature led Tu et al. {cite}`tu_Rowley` to suggest an alternative representation that replaces $\Phi_s$ with another
10001005
$m \times p$ matrix whose columns are eigenvectors of $\check A$.
@@ -1011,7 +1016,7 @@ As we did with representation 2, it is useful to construct an eigencomposition
10111016
according the equation {eq}`eq:tildeAeigen`.
10121017
10131018
1014-
Now construct the $m \times p$ matrix
1019+
Now where $ 1 \leq r \leq p$, construct an $m \times r$ matrix
10151020
10161021
$$
10171022
\Phi = X' V \Sigma^{-1} W
@@ -1021,7 +1026,7 @@ $$ (eq:Phiformula)
10211026
10221027
Tu et al. {cite}`tu_Rowley` established the following
10231028
1024-
**Proposition** The $p$ columns of $\Phi$ are eigenvectors of $\check A$ that correspond to the largest $r$ eigenvalues of $A$.
1029+
**Proposition** The $r$ columns of $\Phi$ are eigenvectors of $\check A$ that correspond to the largest $r$ eigenvalues of $A$.
10251030
10261031
**Proof:** From formula {eq}`eq:Phiformula` we have
10271032
@@ -1042,7 +1047,7 @@ $$ (eq:APhiLambda)
10421047
10431048
Let $\phi_i$ be the the $i$the column of $\Phi$ and $\lambda_i$ be the corresponding $i$ eigenvalue of $\tilde A$ from decomposition {eq}`eq:tildeAeigen`.
10441049
1045-
Writing out the $m \times p$ vectors on both sides of equation {eq}`eq:APhiLambda` and equating them gives
1050+
Writing out the $m \times 1$ vectors on both sides of equation {eq}`eq:APhiLambda` and equating them gives
10461051
10471052
10481053
$$
@@ -1065,10 +1070,7 @@ $$ (eq:Atilde10)
10651070
10661071
where in equation {eq}`eq:Atilde10` $U$ is now the $m \times r$ matrix consisting of the eigevectors of $X X^T$ corresponding to the $r$
10671072
largest singular values of $X$.
1068-
1069-
**Beware:** We have **recycled** notation here by temporarily redefining $U$ as being just $r$ columns instead of $p$ columns as we have up to now.
1070-
1071-
The conclusions of the proposition follow with this altered definition of $U$.
1073+
The conclusions of the proposition remain true with this altered definition of $U$. (**Beware:** We have **recycled** notation here by temporarily redefining $U$ as being just $r$ columns instead of $p$ columns as we have up to now.)
10721074
10731075
10741076
Also see {cite}`DDSE_book` (p. 238)
@@ -1098,7 +1100,7 @@ X_t & = \Phi \check b_t
10981100
$$
10991101
11001102
1101-
There is a better way to compute the $p \times 1$ vector $\check b_t$
1103+
There is a better way to compute the $r \times 1$ vector $\check b_t$
11021104
11031105
In particular, the following argument from {cite}`DDSE_book` (page 240) provides a computationally efficient way
11041106
to compute $\check b_t$.
@@ -1113,36 +1115,38 @@ $$
11131115
X_1 = \Phi \check b_1
11141116
$$ (eq:X1proj)
11151117
1116-
where $\check b_1$ is a $p \times 1$ vector.
1118+
where $\check b_1$ is an $r \times 1$ vector.
11171119
1118-
Since $X_1 = U \tilde X_1$, it follows that
1120+
Recall from representation 1 above that $X_1 = U \tilde b_1$, where $\tilde b_1$ is the time $1$ basis vector for representation 1.
1121+
1122+
It then follows that
11191123
11201124
$$
1121-
U \tilde X_1 = X' V \Sigma^{-1} W b_1
1125+
U \tilde b_1 = X' V \Sigma^{-1} W \check b_1
11221126
$$
11231127
1124-
and
1128+
and consequently
11251129
11261130
$$
1127-
\tilde X_1 = U^T X' V \Sigma^{-1} W \check b_1
1131+
\tilde b_1 = U^T X' V \Sigma^{-1} W \check b_1
11281132
$$
11291133
11301134
Since $ \tilde A = U^T X' V \Sigma^{-1}$, it follows that
11311135
11321136
$$
1133-
\tilde X_1 = \tilde A W \check b_1
1137+
\tilde b_1 = \tilde A W \check b_1
11341138
$$
11351139
1136-
and therefore, by eigendecomposition {eq}`eq:tildeAeigen` of $\tilde A$, we have
1140+
and therefore, by the eigendecomposition {eq}`eq:tildeAeigen` of $\tilde A$, we have
11371141
11381142
$$
1139-
\tilde X_1 = W \Lambda \check b_1
1143+
\tilde b_1 = W \Lambda \check b_1
11401144
$$
11411145
1142-
Therefore,
1146+
Consesquently,
11431147
11441148
$$
1145-
\check b_1 = ( W \Lambda)^{-1} \tilde X_1
1149+
\check b_1 = ( W \Lambda)^{-1} \tilde b_1
11461150
$$
11471151
11481152
or
@@ -1161,26 +1165,28 @@ $$
11611165
$$ (eq:bphieqn)
11621166
11631167
1164-
Conditional on $X_t$, we can construct forecasts $\bar X_{t+j} $ of $X_{t+j}, j = 1, 2, \ldots, $ from
1168+
Components of the basis vector $\check b_t = \Phi^+ X_t \equiv (W \Lambda)^{-1} U^T X_t$ are often called **exact** DMD nodes.
1169+
1170+
Conditional on $X_t$, we can construct forecasts $\overline X_{t+j} $ of $X_{t+j}, j = 1, 2, \ldots, $ from
11651171
either
11661172
11671173
$$
1168-
\bar X_{t+j} = \Phi \Lambda^j \Phi^{+} X_t
1174+
\overline X_{t+j} = \Phi \Lambda^j \Phi^{+} X_t
11691175
$$ (eq:checkXevoln)
11701176
11711177
1172-
or the following equation
1178+
or
11731179
11741180
$$
1175-
\bar X_{t+j} = \Phi \Lambda^j (W \Lambda)^{-1} U^T X_t
1181+
\overline X_{t+j} = \Phi \Lambda^j (W \Lambda)^{-1} U^T X_t
11761182
$$ (eq:checkXevoln2)
11771183
11781184
11791185
11801186
11811187
## Using Fewer Modes
11821188
1183-
For the most part, the preceding formulas assume that we have retained all $p$ modes associated with the positive
1189+
Some of the preceding formulas assume that we have retained all $p$ modes associated with the positive
11841190
singular values of $X$.
11851191
11861192
We can easily adapt all of the formulas to describe a situation in which we instead retain only

0 commit comments

Comments
 (0)