920920 \right)
921921$$
922922
923- The unconditional expectation {eq}` mc_une ` is easy: We just sum over the
924- distribution of $X_t$ to get
923+ Computing the unconditional expectation {eq}` mc_une ` is easy.
924+
925+
926+ We just sum over the distribution of $X_t$ to get
925927
926928$$
927929\mathbb E [ h(X_t) ]
@@ -952,6 +954,25 @@ We already know that this is $P^k(x, \cdot)$, so
952954
953955The vector $P^k h$ stores the conditional expectation $\mathbb E [ h(X_ {t + k}) \mid X_t = x] $ over all $x$.
954956
957+ ### Iterated Expectations
958+
959+ The ** law of iterated expectations** states that
960+
961+ $$
962+ \mathbb E \left[ \mathbb E [ h(X_{t + k}) \mid X_t = x] \right] = \mathbb E [ h(X_{t + k}) ]
963+ $$
964+
965+ where the outer $ \mathbb E$ on the left side is an unconditional distribution taken with respect to the distribution $\psi_t$ of $X_t$
966+ (again see equation {eq}` mdfmc2 ` ).
967+
968+ To verify the law of iterated expectations, use equation {eq}` mc_cce2 ` to substitute $ (P^k h)(x)$ for $E [ h(X_ {t + k}) \mid X_t = x] $, write
969+
970+ $$
971+ \mathbb E \left[ \mathbb E [ h(X_{t + k}) \mid X_t = x] \right] = \psi_t P^k h,
972+ $$
973+
974+ and note $\psi_t P^k h = \psi_ {t+k} h = \mathbb E [ h(X_ {t + k}) ] $.
975+
955976### Expectations of Geometric Sums
956977
957978Sometimes we also want to compute expectations of a geometric sum, such as
@@ -960,9 +981,9 @@ $\sum_t \beta^t h(X_t)$.
960981In view of the preceding discussion, this is
961982
962983$$
963- \mathbb{E} \left [
984+ \mathbb{E} [
964985 \sum_{j=0}^\infty \beta^j h(X_{t+j}) \mid X_t = x
965- \right ]
986+ \Bigr ]
966987= [(I - \beta P)^{-1} h](x)
967988$$
968989
0 commit comments