Skip to content

Commit 281cfe8

Browse files
committed
formatting formulas
1 parent 791a0be commit 281cfe8

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

lectures/newton_method.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -212,11 +212,11 @@ Generalising the process above, Newton's method iterates on
212212
:label: newtons_method
213213
214214
x_{t+1} = \frac{g(x_t) - g'(x_t) x_t}{ 1 - g'(x_t) },
215-
\qquad x_0 \text{ given}
215+
\quad x_0 \text{ given}
216216
```
217217

218218

219-
To implement Newton's method we observe that
219+
To implement Newton's method we observe that the derivative of the law of motion for capital [](motion_law) is
220220

221221
```{math}
222222
:label: newton_method2
@@ -294,16 +294,16 @@ Setting $\hat{f}(x_1) = 0$ and solve for $x_1$ to get
294294

295295
$$
296296
x_1 = x_0 - \frac{ f(x_0) }{ f'(x_0) },
297-
\qquad x_0 \text{ given}
297+
\quad x_0 \text{ given}
298298
$$
299299

300300
Therefore, generalizing the formula above, for one-dimensional root-finding problems, Newton's method iterates on
301301

302302
```{math}
303303
:label: oneD-newton
304304
305-
x_{t+1} = x_t - \frac{ g(x_t) }{ g'(x_t) },
306-
\qquad x_0 \text{ given}
305+
x_{t+1} = x_t - \frac{ f(x_t) }{ f'(x_t) },
306+
\quad x_0 \text{ given}
307307
```
308308

309309
Root-finding formula is also a more frequently used iteration.
@@ -380,7 +380,7 @@ For example, the two goods might be computer components that are typically used
380380
The excess demand function is,
381381

382382
$$
383-
e_i(p) = q^d_i(p) - q^s_i(p), \qquad i = 0, 1
383+
e_i(p) = q^d_i(p) - q^s_i(p), \quad i = 0, 1
384384
$$
385385

386386

0 commit comments

Comments
 (0)