@@ -212,11 +212,11 @@ Generalising the process above, Newton's method iterates on
212212:label: newtons_method
213213
214214x_{t+1} = \frac{g(x_t) - g'(x_t) x_t}{ 1 - g'(x_t) },
215- \qquad x_0 \text{ given}
215+ \quad x_0 \text{ given}
216216```
217217
218218
219- To implement Newton's method we observe that
219+ To implement Newton's method we observe that the derivative of the law of motion for capital [ ] ( motion_law ) is
220220
221221``` {math}
222222:label: newton_method2
@@ -294,16 +294,16 @@ Setting $\hat{f}(x_1) = 0$ and solve for $x_1$ to get
294294
295295$$
296296x_1 = x_0 - \frac{ f(x_0) }{ f'(x_0) },
297- \qquad x_0 \text{ given}
297+ \quad x_0 \text{ given}
298298$$
299299
300300Therefore, generalizing the formula above, for one-dimensional root-finding problems, Newton's method iterates on
301301
302302``` {math}
303303:label: oneD-newton
304304
305- x_{t+1} = x_t - \frac{ g (x_t) }{ g '(x_t) },
306- \qquad x_0 \text{ given}
305+ x_{t+1} = x_t - \frac{ f (x_t) }{ f '(x_t) },
306+ \quad x_0 \text{ given}
307307```
308308
309309Root-finding formula is also a more frequently used iteration.
@@ -380,7 +380,7 @@ For example, the two goods might be computer components that are typically used
380380The excess demand function is,
381381
382382$$
383- e_i(p) = q^d_i(p) - q^s_i(p), \qquad i = 0, 1
383+ e_i(p) = q^d_i(p) - q^s_i(p), \quad i = 0, 1
384384$$
385385
386386
0 commit comments