Skip to content

Commit 1b3d3d4

Browse files
Tom's second Feb 21 edits of svd_intro masterpiece
1 parent 60fbd63 commit 1b3d3d4

File tree

1 file changed

+23
-19
lines changed

1 file changed

+23
-19
lines changed

lectures/svd_intro.md

Lines changed: 23 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -678,7 +678,8 @@ $$
678678
679679
## Reduced-order VAR
680680
681-
Consider a **vector autoregression**
681+
DMD is a natural tool for estimating a **reduced order vector autoregression**,
682+
an object that we define in terms of the populations regression equation
682683
683684
$$
684685
X_{t+1} = \check A X_t + C \epsilon_{t+1}
@@ -687,7 +688,7 @@ $$ (eq:VARred)
687688
where
688689
689690
* $X_t$ is an $m \times 1$ vector
690-
* $\check A$ is an $m \times m$ matrix of rank $r$
691+
* $\check A$ is an $m \times m$ matrix of rank $r$ whose eigenvalues are all less than $1$ in modulus
691692
* $\epsilon_{t+1} \sim {\mathcal N}(0, I)$ is an $m \times 1$ vector of i.i.d. shocks
692693
* $E \epsilon_{t+1} X_t = 0$, so that the shocks are orthogonal to the regressors
693694
@@ -705,14 +706,14 @@ so that according to model {eq}`eq:VARred`
705706
706707
707708
$$
708-
X' = [\check A X_1 + C \epsilon_2 \mid \check A X_2 + C \epsilon_3 \mid \cdots \mid \check A X_{n-1} C
709-
\epsilon_n ]
709+
X' = \begin{bmatrix} \check A X_1 + C \epsilon_2 \mid \check A X_2 + C \epsilon_3 \mid \cdots \mid \check A X_{n-1} + C
710+
\epsilon_n \end{bmatrix}
710711
$$
711712
712713
To illustrate some useful calculations, assume that $n =3 $ and form
713714
714715
$$
715-
X' X^T = [\check A X_1 + C \epsilon_2 \mid \check A X_2 + C \epsilon_3 ]
716+
X' X^T = \begin{bmatrix} \check A X_1 + C \epsilon_2 & \check A X_2 + C \epsilon_3 \end{bmatrix}
716717
\begin{bmatrix} X_1^T \cr X_2^T \end{bmatrix}
717718
$$
718719
@@ -725,7 +726,7 @@ $$
725726
but because
726727
727728
$$
728-
E C( \epsilon_2 X_1^T + \epsilon_3 X_2^T) = 0
729+
E ( \epsilon_2 X_1^T + \epsilon_3 X_2^T) = 0
729730
$$
730731
731732
we have
@@ -768,25 +769,28 @@ $$
768769
C \epsilon_{t+1} = X_{t+1} - \check A X_t , \quad t =1, \ldots, n-1
769770
$$
770771
771-
and check whether they are serially uncorrelated as assumed.
772+
and check whether they are serially uncorrelated as assumed in {eq}`eq:VARred`.
772773
773774
For example, we can compute spectra and cross-spectra of components of $C \epsilon_{t+1}$
775+
and check for serial-uncorrelatedness in the usual ways.
774776
775777
We can also estimate the covariance matrix of $C \epsilon_{t+1}$
776778
from
777779
778780
$$
779-
\frac{1}{n} \sum_{j=1}^{n-1} (C \epsilon_{t+1} )( C \epsilon_{t+1})^T
781+
\frac{1}{n-1} \sum_{t=1}^{n-1} (C \epsilon_{t+1} )( C \epsilon_{t+1})^T
780782
$$
781783
782-
It can be useful to transform variables in our reduced order VAR
783-
784+
It can be enlightening to diagonize our reduced order VAR {eq}`eq:VARred` by noting that it can
785+
be written
786+
784787
785788
$$
786789
X_{t+1} = \Phi \Lambda \Phi^{+} X_t + C \epsilon_{t+1}
787790
$$
788791
789-
according to
792+
793+
and then writing it as
790794
791795
$$
792796
\Phi^+ X_{t+1} = \Lambda \Phi^{+} X_t + \Phi^+ C \epsilon_{t+1}
@@ -796,13 +800,19 @@ or
796800
797801
$$
798802
\tilde X_{t+1} = \Lambda \tilde X_t + \tilde \epsilon_{t+1}
799-
$$
803+
$$ (eq:VARmodes)
800804
801805
where $\tilde X_t $ is an $r \times 1$ **mode** and $\tilde \epsilon_{t+1}$ is an $r \times 1$
802806
shock.
803807
808+
The $r$ modes $\tilde X_t$ obey the first-order VAR {eq}`eq:VARmodes` in which $\Lambda$ is an $r \times r$ diagonal matrix.
809+
810+
Note that while $\Lambda$ is diagonal, the contemporaneous covariance matrix of $\tilde \epsilon_{t+1}$ need not be.
811+
812+
813+
**Remark:** It is permissible for $X_t$ to contain lagged values of observables.
804814
805-
**Remark:** It is permissible for $X_t$ to contain lagged values of observables. For example:
815+
For example, we might have a setting in which
806816
807817
$$
808818
X_t = \begin{bmatrix}
@@ -816,12 +826,6 @@ y_{2, t-1} \cr
816826
\end{bmatrix}
817827
$$
818828
819-
820-
821-
822-
823-
824-
825829
+++
826830
827831
## Source for Some Python Code

0 commit comments

Comments
 (0)