File tree Expand file tree Collapse file tree 1 file changed +10
-4
lines changed Expand file tree Collapse file tree 1 file changed +10
-4
lines changed Original file line number Diff line number Diff line change @@ -1168,7 +1168,7 @@ $$ (eq:decoder102)
11681168Since $\Phi$ has $p$ linearly independent columns, the generalized inverse of $\Phi$ is
11691169
11701170$$
1171- \Phi^{\dagger } = (\Phi^T \Phi)^{-1} \Phi^T
1171+ \Phi^{+ } = (\Phi^T \Phi)^{-1} \Phi^T
11721172$$
11731173
11741174and so
@@ -1177,12 +1177,12 @@ $$
11771177\check b = (\Phi^T \Phi)^{-1} \Phi^T X
11781178$$ (eq:checkbform)
11791179
1180- $\check b$ is recognizable as the matrix of least squares regression coefficients of the matrix
1180+ The matrix $\check b$ is recognizable as the matrix of least squares regression coefficients of the matrix
11811181$X$ on the matrix $\Phi$ and
11821182
11831183$$
11841184\check X = \Phi \check b
1185- $$
1185+ $$ (eq:Xcheck_)
11861186
11871187is the least squares projection of $X$ on $\Phi$.
11881188
@@ -1195,6 +1195,12 @@ we can represent $X$ as the sum of the projection $\check X$ of $X$ on $\Phi$ p
11951195To verify this, note that the least squares projection $\check X$ is related to $X$ by
11961196
11971197
1198+ $$
1199+ X = \check X + \epsilon
1200+ $$
1201+
1202+ or
1203+
11981204$$
11991205X = \Phi \check b + \epsilon
12001206$$
12061212(X - \Phi \check b)^T \Phi = 0_ {m \times p}
12071213$$ (eq:orthls)
12081214
1209- Rearranging the orthogonality conditions {eq}`eq:orthls` gives $X^T \Phi = \check b \Phi^T \Phi$
1215+ Rearranging the orthogonality conditions {eq}`eq:orthls` gives $X^T \Phi = \check b \Phi^T \Phi$,
12101216which implies formula {eq}`eq:checkbform`.
12111217
12121218
You can’t perform that action at this time.
0 commit comments