@@ -4,7 +4,7 @@ jupytext:
44 extension : .md
55 format_name : myst
66 format_version : 0.13
7- jupytext_version : 1.14.5
7+ jupytext_version : 1.14.4
88kernelspec :
99 display_name : Python 3 (ipykernel)
1010 language : python
@@ -17,29 +17,9 @@ kernelspec:
1717
1818In addition to what's in Anaconda, this lecture will need the following libraries:
1919
20- ``` {code-cell} ipython
21- ---
22- tags: [hide-output]
23- ---
24- !pip install graphviz
25- ```
26-
27- ``` {admonition} graphviz
28- :class: warning
29- If you are running this lecture locally it requires [graphviz](https://www.graphviz.org)
30- to be installed on your computer. Installation instructions for graphviz can be found
31- [here](https://www.graphviz.org/download/)
32- ```
33-
34- This lecture studies a model of employment and unemployment flows in a large
35- population called the ** lake model** .
36-
37- We will use the following imports in this lecture.
38-
3920``` {code-cell} ipython3
4021import numpy as np
4122import matplotlib.pyplot as plt
42- from graphviz import Digraph
4323```
4424
4525## The Lake model
@@ -58,26 +38,10 @@ The "flows" between the two lakes are as follows:
5838
5939The below graph illustrates the lake model.
6040
61- ``` {code-cell} ipython3
62- # Create Digraph object
63- G = Digraph()
64- G.attr(rankdir='LR')
65-
66- # Add nodes
67- G.attr('node', shape='circle')
68- G.node('1', 'New entrants', color='blue')
69- G.node('2', 'Unemployed')
70- G.node('3', 'Employed')
71-
72- # Add edges
73- G.edge('1', '2', label='b')
74- G.edge('2', '3', label='λ(1-d)')
75- G.edge('3', '2', label='α(1-d)')
76- G.edge('2', '2', label='(1-λ)(1-d)')
77- G.edge('3', '3', label='(1-α)(1-d)')
78-
79- # Show graphviz
80- G
41+ ``` {figure} /_static/lecture_specific/lake_model/lake_model_worker.png
42+ :name: lake_model_graphviz
43+
44+ An illustration of the lake model
8145```
8246
8347## Dynamics
@@ -603,4 +567,4 @@ plt.show()
603567```
604568
605569``` {solution-end}
606- ```
570+ ```
0 commit comments