@@ -342,7 +342,7 @@ Let's go through a very simple example where LLN fails with IID violated:
342342Assume
343343
344344$$
345- X_0 \sim \mathcal{N} (0,1)
345+ X_0 \sim N (0,1)
346346$$
347347
348348In addition, assume
354354We can then see that
355355
356356$$
357- \bar X_n := \frac{1}{n} \sum_{t=1}^n X_i = X_0 \sim \mathcal{N} (0,1)
357+ \bar X_n := \frac{1}{n} \sum_{t=1}^n X_i = X_0 \sim N (0,1)
358358$$
359359
360- Therefore, the distribution of the mean of $X$ follows $\mathcal{N} (0,1)$.
360+ Therefore, the distribution of the mean of $X$ follows $N (0,1)$.
361361
362362However,
363363
563563and
564564
565565$$
566- X_0 \sim \mathcal{N} \left(\frac{\alpha}{1-\beta}, \frac{\sigma^2}{1-\beta^2}\right)
566+ X_0 \sim N \left(\frac{\alpha}{1-\beta}, \frac{\sigma^2}{1-\beta^2}\right)
567567$$
568568
569- where $\epsilon_t \sim \mathcal{N} (0,1)$
569+ where $\epsilon_t \sim N (0,1)$
570570
5715711. Prove this process violated the independence assumption but not the identically distributed assumption;
5725722. Show LLN holds using simulations with $\alpha = 0.8$, $\beta = 0.2$.
596596
597597$$
598598\begin{aligned}
599- Var(X_{t+1}) &= \beta^2 Var(X_{t}) + \sigma^2\\
599+ \mathrm{ Var} (X_{t+1}) &= \beta^2 \mathrm{ Var} (X_{t}) + \sigma^2\\
600600&= \frac{\beta^2\sigma^2}{1-\beta^2} + \sigma^2 \\
601601&= \frac{\sigma^2}{1-\beta^2}
602602\end{aligned}
@@ -611,7 +611,7 @@ This holds true for all $X_t$ and $\epsilon _{t}$ where $t = 0, ..., n$
611611Therefore,
612612
613613$$
614- X_t \sim \mathcal{N} \left(\frac{\alpha}{1-\beta}, \frac{\sigma^2}{1-\beta^2}\right) \quad t = 0, ..., n
614+ X_t \sim N \left(\frac{\alpha}{1-\beta}, \frac{\sigma^2}{1-\beta^2}\right) \quad t = 0, ..., n
615615$$
616616
617617
0 commit comments