Skip to content

Commit ef05430

Browse files
jstacSmit-create
authored andcommitted
misc
1 parent f266850 commit ef05430

File tree

1 file changed

+84
-52
lines changed

1 file changed

+84
-52
lines changed

lectures/olg.md

Lines changed: 84 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -85,6 +85,9 @@ population size.
8585

8686
We normalize the constant population size in each period to 1.
8787

88+
We also suppose that each agent supplies one "unit" of labor hours, so total
89+
labor supply is 1.
90+
8891

8992
## Supply of capital
9093

@@ -161,8 +164,10 @@ so the Euler equation can also be expressed as
161164
u'(w_t - s_t) = \beta R_{t+1} u'( R_{t+1} s_t)
162165
```
163166

164-
This implies that savings can be written as a fixed function of $w_t$ and
165-
$R_{t+1}$.
167+
Suppose that, for each $w_t$ and $R_{t+1}$, there is exactly one $s_t$ that
168+
solves :eq:`euler_2_olg`.
169+
170+
Then savings can be written as a fixed function of $w_t$ and $R_{t+1}$.
166171

167172
We write this as
168173

@@ -171,8 +176,10 @@ We write this as
171176
s_t = s(w_t, R_{t+1})
172177
```
173178

174-
Since the population size is normalized to 1, this is also total savings in
175-
the economy at time $t$.
179+
Together, $w_t$ and $R_{t+1}$ represent the *prices* in the economy (price of
180+
labor and rental rate of capital).
181+
182+
Thus, [](saving_1_olg) states the quantity of savings given prices.
176183

177184

178185
### Example: log preferences
@@ -192,111 +199,140 @@ Solving for saving, we get
192199
```
193200

194201

202+
### Savings and investment
203+
204+
Since the population size is normalized to 1, $s_t$ is also total savings in
205+
the economy at time $t$.
206+
207+
In our closed economy, there is no foreign investment, so net savings equals
208+
total investment, which can be understood as supply of capital to firms.
209+
210+
211+
In the next section we investigate demand for capital.
212+
213+
Equating supply and demand will allow us to determine equilibrium in the OLG
214+
economy.
215+
195216

196217

197218
## Demand for capital
198219

199-
Now let's pin down the demand for capital.
220+
First we describe the firm problem and then we write down an equation
221+
describing demand for capital given prices.
200222

201223

202224
### Firm's problem
203225

204-
For each integer $t \geq 0$, output $Y_t$ in period $t$ is given by
226+
For each integer $t \geq 0$, output $y_t$ in period $t$ is given by
227+
the **Cobb-Douglas production function**
205228

206229
```{math}
207230
:label: cobb_douglas
208-
Y_t = K_t^{\alpha} L_t^{1-\alpha}
231+
y_t = k_t^{\alpha} \ell_t^{1-\alpha}
209232
```
210233

211-
Here $K_t$ is capital, $L_t$ is labor, and $\alpha$ is the output elasticity of capital in the **Cobb-Douglas production function**.
234+
Here $k_t$ is capital, $\ell_t$ is labor, and $\alpha$ is the called the output
235+
elasticity of capital.
212236

213-
214-
Demand for labor $L$ and capital $K_t$ is determined by the profit
215-
maximization problem
237+
The profit maximization problem of the firm is
216238

217239
```{math}
218240
:label: opt_profit_olg
219-
\max_{K_t, L} \{ K^{\alpha}_t L^{1-\alpha} - R_t K_t - L w_t \}
241+
\max_{k_t, \ell_t} \{ k^{\alpha}_t \ell_t^{1-\alpha} - R_t k_t - \ell_t w_t \}
220242
```
221243

222-
### Demand for capital
223-
224-
The first-order conditions for a maximum can be obtained by taking the
225-
derivative of the objective function with respect to capital and labor
226-
respectively and setting it to zero:
244+
The first-order conditions are obtained by taking the derivative of the
245+
objective function with respect to capital and labor respectively and setting
246+
them to zero:
227247

228248
```{math}
229249
:label: wage
230-
(1-\alpha)(K_t / L)^{\alpha} = w_t
250+
(1-\alpha)(k_t / \ell_t)^{\alpha} = w_t
231251
```
232252

233253
and
234254

235255
```{math}
236256
:label: interest_rate
237-
\alpha (K_t / L)^{\alpha - 1} = R_t
257+
\alpha (k_t / \ell_t)^{\alpha - 1} = R_t
238258
```
239259

240-
Rearranging [](interest_rate) gives the aggregate demand for capital
241260

242-
```{math}
243-
:label: aggregate_demand_capital_olg
244-
K_{t+1} = K^d (R_{t+1}) = L \left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
245-
```
246261

262+
### Demand
247263

264+
Using our assumption $\ell_1 = 1$ allows us to write
248265

249-
## Equilibrium
266+
```{math}
267+
:label: wage_one
268+
w_t = (1-\alpha)k_t^\alpha
269+
```
250270

251-
In our closed economy, net saving this period will be equal to supply next period, i.e.,
271+
and
252272

253273
```{math}
254-
:label: aggregate_supply_capital_1_olg
255-
K_{t+1} = K^S(w_t, R_{t+1}) = S_t = L s_t = L s(w_t, R_{t+1})
274+
:label: interest_rate_one
275+
R_t =
276+
\alpha k_t^{\alpha - 1}
256277
```
257278

258-
Here $K^S$ is a time-invariant function mapping wage $w_t$ and capital return rate $R_{t+1}$ to aggregate capital supply $K_{t+1}$.
279+
Rearranging [](interest_rate_2) gives the aggregate demand for capital
259280

260-
261-
And hence
262281
```{math}
263-
:label: aggregate_supply_capital_log_olg
264-
K_{t+1} = K^s(R_{t+1}) = Ls_t = L \frac{\beta}{1+\beta} w_t
282+
:label: aggregate_demand_capital_olg
283+
k^d (R_{t+1})
284+
:= \left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
265285
```
266286

267287

268288

269-
The equality of aggregate demand [](aggregate_demand_capital_olg) and aggregate supply [](aggregate_supply_capital_log_olg) for capital yields the equalibrium.
289+
## Equilibrium
290+
291+
In equilibrium, savings at time $t$ equals investment at time $t$, which
292+
equals capital supply at time $t+1$.
293+
294+
Equilibrium is obtained this supply with demand for capital from firms.
270295

271296
Specifically we have
272297

273298
```{math}
274299
:label: equilibrium_1
275-
K^s(R_{t+1}) = K^d(R_{t+1})
300+
s(w_t, R_{t+1})
301+
= k^d(R_{t+1})
302+
= \left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
276303
```
277304

305+
This equation determines the equilibrium price $R_{t+1}$.
306+
307+
From it and [](aggregate_demand_capital_olg), we can obtain the equilibrium quantity $k_{t+1}$.
308+
309+
When we solve for this equilibrium, time $t$ quantities are already given, so
310+
we can treat $w_t$ as a constant.
311+
278312
or, equivalently,
279313

280314
```{math}
281315
:label: equilibrium_2
282-
L\frac{\beta}{1+\beta} (1-\alpha)(K_t / L)^{\alpha} = L\left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
316+
\frac{\beta}{1+\beta} (1-\alpha)k_t^{\alpha}
317+
= \left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
283318
```
284319

285-
286-
287-
Then we can solve for the equilibrium price
320+
Solving for the equilibrium interest rate gives
288321

289322
```{math}
290323
:label: equilibrium_price
291-
R^*_{t+1} = \alpha \left ( \frac{\beta (1-\alpha)(K_t / L)^{\alpha}}{1+\beta} \right )^{\alpha - 1}
324+
R_{t+1} =
325+
\alpha
326+
\left (
327+
\frac{\beta (1-\alpha)(k_t / \ell )^{\alpha}}{1+\beta}
328+
\right )^{\alpha - 1}
292329
```
293330

331+
Plugging into either the demand or the supply function gives the equilibrium quantity
294332

295-
296-
Plugging it into either the demand or the supply function gives the equilibrium quantity
297333
```{math}
298334
:label: equilibrium_quantity
299-
K^*_{t+1} = \frac{\beta }{1+\beta} (1-\alpha)(K_t / L)^{\alpha} L
335+
k_{t+1} = \frac{\beta }{1+\beta} (1-\alpha)(k_t / \ell )^{\alpha} \ell
300336
```
301337

302338
```{code-cell} ipython3
@@ -405,7 +441,7 @@ plt.show()
405441
Let $k_t := K_t / L$.
406442

407443

408-
Aggregate supply of capital [](aggregate_supply_capital_log_olg) becomes
444+
Aggregate supply of capital becomes
409445
```{math}
410446
:label: supply_capital_log_olg
411447
k_{t+1} = k^s(R_{t+1}) = \frac{\beta}{1+\beta} w_t
@@ -500,8 +536,8 @@ def k_star(model):
500536
plot_45(m, k_update, kstar=k_star(m))
501537
```
502538

503-
## Another special case: CRRA preference
504539

540+
## CRRA preferences
505541

506542

507543
Let's now assume that the model is the same except that $u(c) = \frac{ c^{1- \gamma}-1}{1-\gamma}$, where $\gamma >0, \gamma\neq 1$.
@@ -536,7 +572,7 @@ Solving for savings, we have
536572

537573

538574

539-
With the CRRA utility, the aggregate supply of capital [](aggregate_supply_capital_1_olg) becomes
575+
With the CRRA utility, aggregate supply of capital becomes
540576
```{math}
541577
:label: aggregate_supply_capital_crra_olg
542578
K_{t+1} = K^S(w_t, R_{t+1}) = S_t = L s_t = L s(w_t, R_{t+1}) = L w_t \left [ 1 + \beta^{-1/\gamma} R_{t+1}^{(\gamma-1)/\gamma} \right ]^{-1}
@@ -614,12 +650,8 @@ TODO: Do we need to add some explanation?
614650

615651
### Dynamics and steady state
616652

653+
Under log utility, capital evolves according to
617654

618-
619-
Setting $k_t := K_t / L$ and using [](saving_crra).
620-
621-
622-
Aggregate supply of capital [](aggregate_supply_capital_1_olg) becomes
623655
```{math}
624656
:label: supply_capital_crra_olg
625657
k_{t+1} = k^s(R_{t+1}) = \left [ 1 + \beta^{-1/\gamma} R_{t+1}^{(\gamma-1)/\gamma} \right ]^{-1} w_t
@@ -867,7 +899,7 @@ With the quasilinear preference the Euler equation [](euler_2_olg) becomes
867899

868900
Let $k_t := K_t / L$.
869901

870-
Since [](aggregate_supply_capital_log_olg), [](wage_2) and [](interest_rate_2) the Euler equation becomes
902+
Since [](supply_capital_log_olg), [](wage_2) and [](interest_rate_2) the Euler equation becomes
871903

872904
```{math}
873905
:label: euler_quasilinear1

0 commit comments

Comments
 (0)