@@ -85,6 +85,9 @@ population size.
8585
8686We normalize the constant population size in each period to 1.
8787
88+ We also suppose that each agent supplies one "unit" of labor hours, so total
89+ labor supply is 1.
90+
8891
8992## Supply of capital
9093
@@ -161,8 +164,10 @@ so the Euler equation can also be expressed as
161164 u'(w_t - s_t) = \beta R_{t+1} u'( R_{t+1} s_t)
162165```
163166
164- This implies that savings can be written as a fixed function of $w_t$ and
165- $R_ {t+1}$.
167+ Suppose that, for each $w_t$ and $R_ {t+1}$, there is exactly one $s_t$ that
168+ solves :eq:` euler_2_olg ` .
169+
170+ Then savings can be written as a fixed function of $w_t$ and $R_ {t+1}$.
166171
167172We write this as
168173
@@ -171,8 +176,10 @@ We write this as
171176 s_t = s(w_t, R_{t+1})
172177```
173178
174- Since the population size is normalized to 1, this is also total savings in
175- the economy at time $t$.
179+ Together, $w_t$ and $R_ {t+1}$ represent the * prices* in the economy (price of
180+ labor and rental rate of capital).
181+
182+ Thus, [ ] ( saving_1_olg ) states the quantity of savings given prices.
176183
177184
178185### Example: log preferences
@@ -192,111 +199,140 @@ Solving for saving, we get
192199```
193200
194201
202+ ### Savings and investment
203+
204+ Since the population size is normalized to 1, $s_t$ is also total savings in
205+ the economy at time $t$.
206+
207+ In our closed economy, there is no foreign investment, so net savings equals
208+ total investment, which can be understood as supply of capital to firms.
209+
210+
211+ In the next section we investigate demand for capital.
212+
213+ Equating supply and demand will allow us to determine equilibrium in the OLG
214+ economy.
215+
195216
196217
197218## Demand for capital
198219
199- Now let's pin down the demand for capital.
220+ First we describe the firm problem and then we write down an equation
221+ describing demand for capital given prices.
200222
201223
202224### Firm's problem
203225
204- For each integer $t \geq 0$, output $Y_t$ in period $t$ is given by
226+ For each integer $t \geq 0$, output $y_t$ in period $t$ is given by
227+ the ** Cobb-Douglas production function**
205228
206229``` {math}
207230:label: cobb_douglas
208- Y_t = K_t ^{\alpha} L_t ^{1-\alpha}
231+ y_t = k_t ^{\alpha} \ell_t ^{1-\alpha}
209232```
210233
211- Here $K_t$ is capital, $L_t$ is labor, and $\alpha$ is the output elasticity of capital in the ** Cobb-Douglas production function** .
234+ Here $k_t$ is capital, $\ell_t$ is labor, and $\alpha$ is the called the output
235+ elasticity of capital.
212236
213-
214- Demand for labor $L$ and capital $K_t$ is determined by the profit
215- maximization problem
237+ The profit maximization problem of the firm is
216238
217239``` {math}
218240:label: opt_profit_olg
219- \max_{K_t, L } \{ K ^{\alpha}_t L ^{1-\alpha} - R_t K_t - L w_t \}
241+ \max_{k_t, \ell_t } \{ k ^{\alpha}_t \ell_t ^{1-\alpha} - R_t k_t - \ell_t w_t \}
220242```
221243
222- ### Demand for capital
223-
224- The first-order conditions for a maximum can be obtained by taking the
225- derivative of the objective function with respect to capital and labor
226- respectively and setting it to zero:
244+ The first-order conditions are obtained by taking the derivative of the
245+ objective function with respect to capital and labor respectively and setting
246+ them to zero:
227247
228248``` {math}
229249:label: wage
230- (1-\alpha)(K_t / L )^{\alpha} = w_t
250+ (1-\alpha)(k_t / \ell_t )^{\alpha} = w_t
231251```
232252
233253and
234254
235255``` {math}
236256:label: interest_rate
237- \alpha (K_t / L )^{\alpha - 1} = R_t
257+ \alpha (k_t / \ell_t )^{\alpha - 1} = R_t
238258```
239259
240- Rearranging [ ] ( interest_rate ) gives the aggregate demand for capital
241260
242- ``` {math}
243- :label: aggregate_demand_capital_olg
244- K_{t+1} = K^d (R_{t+1}) = L \left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
245- ```
246261
262+ ### Demand
247263
264+ Using our assumption $\ell_1 = 1$ allows us to write
248265
249- ## Equilibrium
266+ ``` {math}
267+ :label: wage_one
268+ w_t = (1-\alpha)k_t^\alpha
269+ ```
250270
251- In our closed economy, net saving this period will be equal to supply next period, i.e.,
271+ and
252272
253273``` {math}
254- :label: aggregate_supply_capital_1_olg
255- K_{t+1} = K^S(w_t, R_{t+1}) = S_t = L s_t = L s(w_t, R_{t+1})
274+ :label: interest_rate_one
275+ R_t =
276+ \alpha k_t^{\alpha - 1}
256277```
257278
258- Here $K^S$ is a time-invariant function mapping wage $w_t$ and capital return rate $R _ {t+1}$ to aggregate capital supply $K _ {t+1}$.
279+ Rearranging [ ] ( interest_rate_2 ) gives the aggregate demand for capital
259280
260-
261- And hence
262281``` {math}
263- :label: aggregate_supply_capital_log_olg
264- K_{t+1} = K^s(R_{t+1}) = Ls_t = L \frac{\beta}{1+\beta} w_t
282+ :label: aggregate_demand_capital_olg
283+ k^d (R_{t+1})
284+ := \left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
265285```
266286
267287
268288
269- The equality of aggregate demand [ ] ( aggregate_demand_capital_olg ) and aggregate supply [ ] ( aggregate_supply_capital_log_olg ) for capital yields the equalibrium.
289+ ## Equilibrium
290+
291+ In equilibrium, savings at time $t$ equals investment at time $t$, which
292+ equals capital supply at time $t+1$.
293+
294+ Equilibrium is obtained this supply with demand for capital from firms.
270295
271296Specifically we have
272297
273298``` {math}
274299:label: equilibrium_1
275- K^s(R_{t+1}) = K^d(R_{t+1})
300+ s(w_t, R_{t+1})
301+ = k^d(R_{t+1})
302+ = \left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
276303```
277304
305+ This equation determines the equilibrium price $R_ {t+1}$.
306+
307+ From it and [ ] ( aggregate_demand_capital_olg ) , we can obtain the equilibrium quantity $k_ {t+1}$.
308+
309+ When we solve for this equilibrium, time $t$ quantities are already given, so
310+ we can treat $w_t$ as a constant.
311+
278312or, equivalently,
279313
280314``` {math}
281315:label: equilibrium_2
282- L\frac{\beta}{1+\beta} (1-\alpha)(K_t / L)^{\alpha} = L\left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
316+ \frac{\beta}{1+\beta} (1-\alpha)k_t^{\alpha}
317+ = \left (\frac{R_{t+1}}{\alpha} \right )^{1/(\alpha - 1)}
283318```
284319
285-
286-
287- Then we can solve for the equilibrium price
320+ Solving for the equilibrium interest rate gives
288321
289322``` {math}
290323:label: equilibrium_price
291- R^*_{t+1} = \alpha \left ( \frac{\beta (1-\alpha)(K_t / L)^{\alpha}}{1+\beta} \right )^{\alpha - 1}
324+ R_{t+1} =
325+ \alpha
326+ \left (
327+ \frac{\beta (1-\alpha)(k_t / \ell )^{\alpha}}{1+\beta}
328+ \right )^{\alpha - 1}
292329```
293330
331+ Plugging into either the demand or the supply function gives the equilibrium quantity
294332
295-
296- Plugging it into either the demand or the supply function gives the equilibrium quantity
297333``` {math}
298334:label: equilibrium_quantity
299- K^*_ {t+1} = \frac{\beta }{1+\beta} (1-\alpha)(K_t / L )^{\alpha} L
335+ k_ {t+1} = \frac{\beta }{1+\beta} (1-\alpha)(k_t / \ell )^{\alpha} \ell
300336```
301337
302338``` {code-cell} ipython3
@@ -405,7 +441,7 @@ plt.show()
405441Let $k_t := K_t / L$.
406442
407443
408- Aggregate supply of capital [ ] ( aggregate_supply_capital_log_olg ) becomes
444+ Aggregate supply of capital becomes
409445``` {math}
410446:label: supply_capital_log_olg
411447 k_{t+1} = k^s(R_{t+1}) = \frac{\beta}{1+\beta} w_t
@@ -500,8 +536,8 @@ def k_star(model):
500536plot_45(m, k_update, kstar=k_star(m))
501537```
502538
503- ## Another special case: CRRA preference
504539
540+ ## CRRA preferences
505541
506542
507543Let's now assume that the model is the same except that $u(c) = \frac{ c^{1- \gamma}-1}{1-\gamma}$, where $\gamma >0, \gamma\neq 1$.
@@ -536,7 +572,7 @@ Solving for savings, we have
536572
537573
538574
539- With the CRRA utility, the aggregate supply of capital [ ] ( aggregate_supply_capital_1_olg ) becomes
575+ With the CRRA utility, aggregate supply of capital becomes
540576``` {math}
541577:label: aggregate_supply_capital_crra_olg
542578 K_{t+1} = K^S(w_t, R_{t+1}) = S_t = L s_t = L s(w_t, R_{t+1}) = L w_t \left [ 1 + \beta^{-1/\gamma} R_{t+1}^{(\gamma-1)/\gamma} \right ]^{-1}
@@ -614,12 +650,8 @@ TODO: Do we need to add some explanation?
614650
615651### Dynamics and steady state
616652
653+ Under log utility, capital evolves according to
617654
618-
619- Setting $k_t := K_t / L$ and using [ ] ( saving_crra ) .
620-
621-
622- Aggregate supply of capital [ ] ( aggregate_supply_capital_1_olg ) becomes
623655``` {math}
624656:label: supply_capital_crra_olg
625657 k_{t+1} = k^s(R_{t+1}) = \left [ 1 + \beta^{-1/\gamma} R_{t+1}^{(\gamma-1)/\gamma} \right ]^{-1} w_t
@@ -867,7 +899,7 @@ With the quasilinear preference the Euler equation [](euler_2_olg) becomes
867899
868900Let $k_t := K_t / L$.
869901
870- Since [ ] ( aggregate_supply_capital_log_olg ) , [ ] ( wage_2 ) and [ ] ( interest_rate_2 ) the Euler equation becomes
902+ Since [ ] ( supply_capital_log_olg ) , [ ] ( wage_2 ) and [ ] ( interest_rate_2 ) the Euler equation becomes
871903
872904``` {math}
873905:label: euler_quasilinear1
0 commit comments