@@ -177,7 +177,7 @@ In particular, we suppose that
177177
178178``` {math}
179179:label: p_et
180- p^e_t = f(p_{t-1}, p_{t-2})
180+ p^e_{t-1} = f(p_{t-1}, p_{t-2})
181181```
182182
183183where $f$ is some function.
@@ -204,7 +204,7 @@ Let's start with naive expectations, which refers to the case where producers ex
204204
205205In other words,
206206
207- $$ p_t ^e = p_{t-1} $$
207+ $$ p_{t-1} ^e = p_{t-1} $$
208208
209209Using {eq}` price_t ` , we then have
210210
@@ -408,15 +408,15 @@ That is,
408408
409409``` {math}
410410:label: pe_adaptive
411- p_t ^e = \alpha p_{t-1} + (1-\alpha) p^e_{t-1 }
411+ p_{t-1} ^e = \alpha p_{t-1} + (1-\alpha) p^e_{t-2 }
412412\qquad (0 \leq \alpha \leq 1)
413413```
414414
415415Another way to write this is
416416
417417``` {math}
418418:label: pe_adaptive_2
419- p_t ^e = p^e_{t-1 } + \alpha (p_{t-1} - p_{t-1 }^e)
419+ p_{t-1} ^e = p^e_{t-2 } + \alpha (p_{t-1} - p_{t-2 }^e)
420420```
421421
422422This equation helps to show that expectations shift
@@ -427,7 +427,7 @@ This equation helps to show that expectations shift
427427Using {eq}` pe_adaptive ` , we obtain the dynamics
428428
429429$$
430- p_t = - \frac{1}{b} [ S(\alpha p_{t-1} + (1-\alpha) p^e_{t-1 }) - a]
430+ p_t = - \frac{1}{b} [ S(\alpha p_{t-1} + (1-\alpha) p^e_{t-2 }) - a]
431431$$
432432
433433
@@ -547,7 +547,7 @@ That is,
547547
548548``` {math}
549549:label: pe_blae
550- p_t ^e = \alpha p_{t-1} + (1-\alpha) p_{t-2}
550+ p_{t-1} ^e = \alpha p_{t-1} + (1-\alpha) p_{t-2}
551551```
552552
553553
0 commit comments