@@ -98,119 +98,6 @@ def creat_cs_model(R=1.05, g1=1, g2=1/2, T=65):
9898
9999+++ {"user_expressions": []}
100100
101- ## Difference equations with linear algebra
102-
103- As a warmup, we'll describe a useful way of representing and "solving" linear difference equations.
104-
105- To generate some $y$ vectors, we'll just write down a linear difference equation
106- with appropriate initial conditions and then use linear algebra to solve it.
107-
108- ### First-order difference equation
109-
110- We'll start with a first-order linear difference equation for $\{y_t\}_{t=0}^T$:
111-
112- $$
113- y_ {t} = \lambda y_ {t-1}, \quad t = 1, 2, \ldots, T
114- $$
115-
116- where $y_0$ is a given initial condition.
117-
118-
119- We can cast this set of $T$ equations as a single matrix equation
120-
121- $$
122- \begin{bmatrix}
123- 1 & 0 & 0 & \cdots & 0 & 0 \cr
124- -\lambda & 1 & 0 & \cdots & 0 & 0 \cr
125- 0 & -\lambda & 1 & \cdots & 0 & 0 \cr
126- \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
127- 0 & 0 & 0 & \cdots & -\lambda & 1
128- \end{bmatrix}
129- \begin{bmatrix}
130- y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
131- \end{bmatrix}
132- =
133- \begin{bmatrix}
134- \lambda y_0 \cr 0 \cr 0 \cr \vdots \cr 0
135- \end{bmatrix}
136- $$
137-
138-
139- Multiplying both sides by inverse of the matrix on the left provides the solution
140-
141- ```{math}
142- :label: fst_ord_inverse
143-
144- \begin{bmatrix}
145- y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
146- \end{bmatrix}
147- =
148- \begin{bmatrix}
149- 1 & 0 & 0 & \cdots & 0 & 0 \cr
150- \lambda & 1 & 0 & \cdots & 0 & 0 \cr
151- \lambda^2 & \lambda & 1 & \cdots & 0 & 0 \cr
152- \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
153- \lambda^{T-1} & \lambda^{T-2} & \lambda^{T-3} & \cdots & \lambda & 1
154- \end{bmatrix}
155- \begin{bmatrix}
156- \lambda y_0 \cr 0 \cr 0 \cr \vdots \cr 0
157- \end{bmatrix}
158- ```
159-
160- ```{exercise}
161- :label: consmooth_ex1
162-
163- In the {eq}`fst_ord_inverse`, we multiply the inverse of the matrix $A$. In this exercise, please confirm that
164-
165- $$
166- \begin{bmatrix}
167- 1 & 0 & 0 & \cdots & 0 & 0 \cr
168- \lambda & 1 & 0 & \cdots & 0 & 0 \cr
169- \lambda^2 & \lambda & 1 & \cdots & 0 & 0 \cr
170- \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
171- \lambda^{T-1} & \lambda^{T-2} & \lambda^{T-3} & \cdots & \lambda & 1
172- \end{bmatrix}
173- $$
174-
175- is the inverse of $A$ and check that $A A^{-1} = I$
176-
177- ```
178-
179- ### Second order difference equation
180-
181- The second-order linear difference equation for $\{y_t\}_{t=0}^T$ is
182-
183- $$
184- y_ {t} = \lambda_1 y_ {t-1} + \lambda_2 y_ {t-2}, \quad t = 1, 2, \ldots, T
185- $$
186-
187- Similarly, we can cast this set of $T$ equations as a single matrix equation
188-
189- $$
190- \begin{bmatrix}
191- 1 & 0 & 0 & \cdots & 0 & 0 & 0 \cr
192- -\lambda_1 & 1 & 0 & \cdots & 0 & 0 & 0 \cr
193- -\lambda_2 & -\lambda_1 & 1 & \cdots & 0 & 0 & 0 \cr
194- \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
195- 0 & 0 & 0 & \cdots & -\lambda_2 & -\lambda_1 & 1
196- \end{bmatrix}
197- \begin{bmatrix}
198- y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
199- \end{bmatrix}
200- =
201- \begin{bmatrix}
202- \lambda_1 y_0 + \lambda_2 y_ {-1} \cr \lambda_2 y_0 \cr 0 \cr \vdots \cr 0
203- \end{bmatrix}
204- $$
205-
206- Multiplying both sides by inverse of the matrix on the left again provides the solution.
207-
208- ```{exercise}
209- :label: consmooth_ex2
210-
211- As an exercise, we ask you to represent and solve a **third order linear difference equation**.
212- How many initial conditions must you specify?
213- ```
214101
215102## Friedman-Hall consumption-smoothing model
216103
@@ -558,3 +445,124 @@ plt.ylabel('derivatives of welfare')
558445plt.xlabel(r'$\phi$')
559446plt.show()
560447```
448+
449+
450+ ## Difference equations with linear algebra
451+
452+ In the preceding sections we have used linear algebra to solve a consumption smoothing model.
453+
454+ The same tools from linear algebra -- matrix multiplication and matrix inversion -- can be used to study many other dynamic models too.
455+
456+ We'll concluse this lecture by giving a couple of examples.
457+
458+ In particular, we'll describe a useful way of representing and "solving" linear difference equations.
459+
460+ To generate some $y$ vectors, we'll just write down a linear difference equation
461+ with appropriate initial conditions and then use linear algebra to solve it.
462+
463+ ### First-order difference equation
464+
465+ We'll start with a first-order linear difference equation for $\{y_t\}_{t=0}^T$:
466+
467+ $$
468+ y_ {t} = \lambda y_ {t-1}, \quad t = 1, 2, \ldots, T
469+ $$
470+
471+ where $y_0$ is a given initial condition.
472+
473+
474+ We can cast this set of $T$ equations as a single matrix equation
475+
476+ $$
477+ \begin{bmatrix}
478+ 1 & 0 & 0 & \cdots & 0 & 0 \cr
479+ -\lambda & 1 & 0 & \cdots & 0 & 0 \cr
480+ 0 & -\lambda & 1 & \cdots & 0 & 0 \cr
481+ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
482+ 0 & 0 & 0 & \cdots & -\lambda & 1
483+ \end{bmatrix}
484+ \begin{bmatrix}
485+ y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
486+ \end{bmatrix}
487+ =
488+ \begin{bmatrix}
489+ \lambda y_0 \cr 0 \cr 0 \cr \vdots \cr 0
490+ \end{bmatrix}
491+ $$
492+
493+
494+ Multiplying both sides by inverse of the matrix on the left provides the solution
495+
496+ ```{math}
497+ :label: fst_ord_inverse
498+
499+ \begin{bmatrix}
500+ y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
501+ \end{bmatrix}
502+ =
503+ \begin{bmatrix}
504+ 1 & 0 & 0 & \cdots & 0 & 0 \cr
505+ \lambda & 1 & 0 & \cdots & 0 & 0 \cr
506+ \lambda^2 & \lambda & 1 & \cdots & 0 & 0 \cr
507+ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
508+ \lambda^{T-1} & \lambda^{T-2} & \lambda^{T-3} & \cdots & \lambda & 1
509+ \end{bmatrix}
510+ \begin{bmatrix}
511+ \lambda y_0 \cr 0 \cr 0 \cr \vdots \cr 0
512+ \end{bmatrix}
513+ ```
514+
515+ ```{exercise}
516+ :label: consmooth_ex1
517+
518+ In the {eq}`fst_ord_inverse`, we multiply the inverse of the matrix $A$. In this exercise, please confirm that
519+
520+ $$
521+ \begin{bmatrix}
522+ 1 & 0 & 0 & \cdots & 0 & 0 \cr
523+ \lambda & 1 & 0 & \cdots & 0 & 0 \cr
524+ \lambda^2 & \lambda & 1 & \cdots & 0 & 0 \cr
525+ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
526+ \lambda^{T-1} & \lambda^{T-2} & \lambda^{T-3} & \cdots & \lambda & 1
527+ \end{bmatrix}
528+ $$
529+
530+ is the inverse of $A$ and check that $A A^{-1} = I$
531+
532+ ```
533+
534+ ### Second order difference equation
535+
536+ The second-order linear difference equation for $\{y_t\}_{t=0}^T$ is
537+
538+ $$
539+ y_ {t} = \lambda_1 y_ {t-1} + \lambda_2 y_ {t-2}, \quad t = 1, 2, \ldots, T
540+ $$
541+
542+ Similarly, we can cast this set of $T$ equations as a single matrix equation
543+
544+ $$
545+ \begin{bmatrix}
546+ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \cr
547+ -\lambda_1 & 1 & 0 & \cdots & 0 & 0 & 0 \cr
548+ -\lambda_2 & -\lambda_1 & 1 & \cdots & 0 & 0 & 0 \cr
549+ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
550+ 0 & 0 & 0 & \cdots & -\lambda_2 & -\lambda_1 & 1
551+ \end{bmatrix}
552+ \begin{bmatrix}
553+ y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
554+ \end{bmatrix}
555+ =
556+ \begin{bmatrix}
557+ \lambda_1 y_0 + \lambda_2 y_ {-1} \cr \lambda_2 y_0 \cr 0 \cr \vdots \cr 0
558+ \end{bmatrix}
559+ $$
560+
561+ Multiplying both sides by inverse of the matrix on the left again provides the solution.
562+
563+ ```{exercise}
564+ :label: consmooth_ex2
565+
566+ As an exercise, we ask you to represent and solve a **third order linear difference equation**.
567+ How many initial conditions must you specify?
568+ ```
0 commit comments