@@ -52,7 +52,7 @@ import matplotlib.pyplot as plt
5252import numpy as np
5353```
5454
55- (la_eigen )=
55+ (matrices_as_transformation )=
5656## Matrices as Transformations
5757
5858Let's start by discussing an important concept concerning matrices.
@@ -367,8 +367,6 @@ grid_transform(A)
367367
368368More examples of common transition matrices can be found [ here] ( https://en.wikipedia.org/wiki/Transformation_matrix#Examples_in_2_dimensions ) .
369369
370- +++ {"tags": [ ] }
371-
372370## Matrix Multiplication as Composition
373371
374372Since matrices act as functions that transform one vector to another, we can
@@ -571,8 +569,6 @@ grid_composition_transform(B,A) #transformation BA
571569
572570It is quite evident that the transformation $AB$ is not the same as the transformation $BA$.
573571
574- +++
575-
576572## Iterating on a Fixed Map
577573
578574In economics (and especially in dynamic modeling), we often are interested in
@@ -685,9 +681,7 @@ We thus observe that the sequence $(A^kv)_{k \geq 0}$ behaves differently depend
685681
686682We now discuss the property of A that determines this behaviour.
687683
688- +++
689-
690- (la_eigen)=
684+ (la_eigenvalues)=
691685## Eigenvalues
692686
693687``` {index} single: Linear Algebra; Eigenvalues
@@ -702,7 +696,7 @@ Let $A$ be an $n \times n$ square matrix.
702696If $\lambda$ is scalar and $v$ is a non-zero $n$-vector such that
703697
704698$$
705- A v = \lambda v
699+ A v = \lambda v
706700$$
707701
708702then we say that $\lambda$ is an * eigenvalue* of $A$, and $v$ is an * eigenvector* .
@@ -890,7 +884,8 @@ For a matrix $A$, the Perron-Frobenius theorem characterises certain
890884properties of the dominant eigenvalue and its corresponding eigenvector when
891885$A$ is a nonnegative square matrix.
892886
893- ```` {prf:theorem} Perron-Frobenius Theorem
887+ ``` {prf:theorem} Perron-Frobenius Theorem
888+ :label: perron-frobenius
894889
895890If a matrix $A \geq 0$ then,
896891
@@ -903,18 +898,14 @@ Moreover if $A$ is also irreducible then,
9038984. the eigenvector $v$ associated with the eigenvalue $r(A)$ is strictly positive.
9048995. there exists no other positive eigenvector $v$ (except scalar multiples of v) associated with $r(A)$.
905900
906- ````
907-
908- +++
901+ ```
909902
910903(This is a relatively simple version of the theorem --- for more details see
911904[ here] ( https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem ) ).
912905
913906We will see applications of the theorem below.
914907
915908
916-
917-
918909(la_neumann)=
919910## The Neumann Series Lemma
920911
@@ -966,7 +957,9 @@ The following is a fundamental result in functional analysis that generalises
966957{eq}` gp_sum ` to a multivariate case.
967958
968959
969- ```` {prf:theorem} Neumann Series Lemma
960+ ``` {prf:theorem} Neumann Series Lemma
961+ :label: neumann_series_lemma
962+
970963Let $A$ be a square matrix and let $A^k$ be the $k$-th power of $A$.
971964
972965Let $r(A)$ be the dominant eigenvector or as it is commonly called the *spectral radius*, defined as $\max_i |\lambda_i|$, where
@@ -979,9 +972,7 @@ Neumann's theorem states the following: If $r(A) < 1$, then $I - A$ is invertibl
979972$$
980973(I - A)^{-1} = \sum_{k=0}^{\infty} A^k
981974$$
982- ````
983-
984- +++
975+ ```
985976
986977We can see the Neumann series lemma in action in the following example.
987978
@@ -1025,8 +1016,6 @@ np.allclose(A_sum, B_inverse)
10251016Although we truncate the infinite sum at $k = 50$, both methods give us the same
10261017result which illustrates the result of the Neumann Series lemma.
10271018
1028- +++
1029-
10301019## Exercises
10311020
10321021``` {exercise-start} Leontief's Input-Output Model
0 commit comments