Skip to content

Commit c1a55d4

Browse files
committed
FIX: fix labeling issues with proofs and tidy up
1 parent a0c43d7 commit c1a55d4

File tree

1 file changed

+10
-21
lines changed

1 file changed

+10
-21
lines changed

lectures/eigen.md

Lines changed: 10 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ import matplotlib.pyplot as plt
5252
import numpy as np
5353
```
5454

55-
(la_eigen)=
55+
(matrices_as_transformation)=
5656
## Matrices as Transformations
5757

5858
Let's start by discussing an important concept concerning matrices.
@@ -367,8 +367,6 @@ grid_transform(A)
367367

368368
More examples of common transition matrices can be found [here](https://en.wikipedia.org/wiki/Transformation_matrix#Examples_in_2_dimensions).
369369

370-
+++ {"tags": []}
371-
372370
## Matrix Multiplication as Composition
373371

374372
Since matrices act as functions that transform one vector to another, we can
@@ -571,8 +569,6 @@ grid_composition_transform(B,A) #transformation BA
571569

572570
It is quite evident that the transformation $AB$ is not the same as the transformation $BA$.
573571

574-
+++
575-
576572
## Iterating on a Fixed Map
577573

578574
In economics (and especially in dynamic modeling), we often are interested in
@@ -685,9 +681,7 @@ We thus observe that the sequence $(A^kv)_{k \geq 0}$ behaves differently depend
685681

686682
We now discuss the property of A that determines this behaviour.
687683

688-
+++
689-
690-
(la_eigen)=
684+
(la_eigenvalues)=
691685
## Eigenvalues
692686

693687
```{index} single: Linear Algebra; Eigenvalues
@@ -702,7 +696,7 @@ Let $A$ be an $n \times n$ square matrix.
702696
If $\lambda$ is scalar and $v$ is a non-zero $n$-vector such that
703697

704698
$$
705-
A v = \lambda v
699+
A v = \lambda v
706700
$$
707701

708702
then we say that $\lambda$ is an *eigenvalue* of $A$, and $v$ is an *eigenvector*.
@@ -890,7 +884,8 @@ For a matrix $A$, the Perron-Frobenius theorem characterises certain
890884
properties of the dominant eigenvalue and its corresponding eigenvector when
891885
$A$ is a nonnegative square matrix.
892886

893-
````{prf:theorem} Perron-Frobenius Theorem
887+
```{prf:theorem} Perron-Frobenius Theorem
888+
:label: perron-frobenius
894889
895890
If a matrix $A \geq 0$ then,
896891
@@ -903,18 +898,14 @@ Moreover if $A$ is also irreducible then,
903898
4. the eigenvector $v$ associated with the eigenvalue $r(A)$ is strictly positive.
904899
5. there exists no other positive eigenvector $v$ (except scalar multiples of v) associated with $r(A)$.
905900
906-
````
907-
908-
+++
901+
```
909902

910903
(This is a relatively simple version of the theorem --- for more details see
911904
[here](https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem)).
912905

913906
We will see applications of the theorem below.
914907

915908

916-
917-
918909
(la_neumann)=
919910
## The Neumann Series Lemma
920911

@@ -966,7 +957,9 @@ The following is a fundamental result in functional analysis that generalises
966957
{eq}`gp_sum` to a multivariate case.
967958

968959

969-
````{prf:theorem} Neumann Series Lemma
960+
```{prf:theorem} Neumann Series Lemma
961+
:label: neumann_series_lemma
962+
970963
Let $A$ be a square matrix and let $A^k$ be the $k$-th power of $A$.
971964
972965
Let $r(A)$ be the dominant eigenvector or as it is commonly called the *spectral radius*, defined as $\max_i |\lambda_i|$, where
@@ -979,9 +972,7 @@ Neumann's theorem states the following: If $r(A) < 1$, then $I - A$ is invertibl
979972
$$
980973
(I - A)^{-1} = \sum_{k=0}^{\infty} A^k
981974
$$
982-
````
983-
984-
+++
975+
```
985976

986977
We can see the Neumann series lemma in action in the following example.
987978

@@ -1025,8 +1016,6 @@ np.allclose(A_sum, B_inverse)
10251016
Although we truncate the infinite sum at $k = 50$, both methods give us the same
10261017
result which illustrates the result of the Neumann Series lemma.
10271018

1028-
+++
1029-
10301019
## Exercises
10311020

10321021
```{exercise-start} Leontief's Input-Output Model

0 commit comments

Comments
 (0)