Skip to content

Commit c0806f5

Browse files
committed
misc
1 parent dcce12f commit c0806f5

File tree

1 file changed

+20
-12
lines changed

1 file changed

+20
-12
lines changed

lectures/olg.md

Lines changed: 20 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -107,7 +107,7 @@ First let's consider the household side.
107107

108108
### Consumer's problem
109109

110-
Suppose that utility for individuals born at time $t$ take the form
110+
Suppose that utility for individuals born at time $t$ takes the form
111111

112112
```{math}
113113
:label: eq_crra
@@ -263,7 +263,7 @@ them to zero:
263263

264264
### Demand
265265

266-
Using our assumption $\ell_1 = 1$ allows us to write
266+
Using our assumption $\ell_t = 1$ allows us to write
267267

268268
```{math}
269269
:label: wage_one
@@ -444,7 +444,14 @@ In particular, since $w_t = (1-\alpha)k_t^\alpha$, we have
444444
If we iterate on this equation, we get a sequence for capital stock.
445445

446446

447-
Let's plot the 45 degree diagram.
447+
Let's plot the 45 degree diagram of these dynamics, which we write as
448+
449+
$$
450+
k_{t+1} = g(k_t)
451+
\quad \text{where }
452+
g(k) := \frac{\beta}{1+\beta} (1-\alpha)(k)^{\alpha}
453+
$$
454+
448455

449456
```{code-cell} ipython3
450457
def k_update(k, α, β):
@@ -481,14 +488,15 @@ plt.show()
481488
The diagram shows that the model has a unique positive steady state, which we
482489
denote by $k^*$.
483490

484-
We can solve for $k^*$ by setting $k_{t+1} = k_t = k^*$ in [](law_of_motion_capital), which yields
491+
We can solve for $k^*$ by setting $k^* = g(k^*)$, or
485492

486493
```{math}
487494
:label: steady_state_1
488495
k^* = \frac{\beta (1-\alpha) (k^*)^{\alpha}}{(1+\beta)}
489496
```
490497

491-
We can solve this equation to obtain
498+
Solving this equation yields
499+
492500
```{math}
493501
:label: steady_state_2
494502
k^* = \left (\frac{\beta (1-\alpha)}{1+\beta} \right )^{1/(1-\alpha)}
@@ -707,7 +715,7 @@ If $k_t$ is given then $f$ is a function of unknown $k_{t+1}$.
707715

708716
Then we can use `scipy.optimize.newton` to solve $f(k_{t+1}, k_t)=0$ for $k_{t+1}$.
709717

710-
First let define $f$.
718+
First let's define $f$.
711719

712720
```{code-cell} ipython3
713721
def f(k_prime, k, model):
@@ -774,7 +782,7 @@ $$
774782
Unlike the log preference case, the CRRA utility steady state $k^*$
775783
cannot be obtained analytically.
776784
777-
Instead, solve for $k^*$ using newton's method.
785+
Instead, we solve for $k^*$ using Newton's method.
778786
779787
```
780788

@@ -783,12 +791,12 @@ Instead, solve for $k^*$ using newton's method.
783791
:class: dropdown
784792
```
785793

786-
We introduce a function $g$ such that
787-
positive steady state is the root of $g$.
794+
We introduce a function $h$ such that
795+
positive steady state is the root of $h$.
788796

789797
```{math}
790798
:label: crra_newton_2
791-
g(k^*) = k^*
799+
h(k^*) = k^*
792800
\left [
793801
1 + \beta^{-1/\gamma} (\alpha (k^*)^{\alpha-1})^{(\gamma-1)/\gamma}
794802
\right ] - (1-\alpha)(k^*)^{\alpha}
@@ -797,7 +805,7 @@ positive steady state is the root of $g$.
797805
Here it is in Python
798806

799807
```{code-cell} ipython3
800-
def g(k_star, model):
808+
def h(k_star, model):
801809
α, β, γ = model.α, model.β, model.γ
802810
z = (1 - α) * k_star**α
803811
R1 = α ** (1-1/γ)
@@ -809,7 +817,7 @@ def g(k_star, model):
809817
Let's apply Newton's method to find the root:
810818

811819
```{code-cell} ipython3
812-
k_star = optimize.newton(g, 0.2, args=(model,))
820+
k_star = optimize.newton(h, 0.2, args=(model,))
813821
print(f"k_star = {k_star}")
814822
```
815823

0 commit comments

Comments
 (0)