Skip to content

Commit a80a90b

Browse files
committed
edits
1 parent e33cf84 commit a80a90b

File tree

1 file changed

+30
-19
lines changed

1 file changed

+30
-19
lines changed

lectures/inequality.md

Lines changed: 30 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.14.1
7+
jupytext_version: 1.14.4
88
kernelspec:
99
display_name: Python 3 (ipykernel)
1010
language: python
@@ -47,7 +47,7 @@ Many economic policies, from taxation to the welfare state, are
4747
aimed at addressing inequality.
4848

4949

50-
### Measurment
50+
### Measurement
5151

5252
One problem with these debates is that inequality is often poorly defined.
5353

@@ -67,6 +67,7 @@ We will install the following libraries.
6767

6868
```{code-cell} ipython3
6969
:tags: [hide-output]
70+
7071
!pip install --upgrade quantecon interpolation
7172
```
7273

@@ -81,9 +82,6 @@ import random as rd
8182
from interpolation import interp
8283
```
8384

84-
85-
+++
86-
8785
## The Lorenz Curve
8886

8987
One popular measure of inequality is the Lorenz curve.
@@ -130,7 +128,7 @@ income, consumption, etc.
130128

131129
### Lorenz Curves of Simulated Data
132130

133-
Let's look at some examples and try build understanding.
131+
Let's look at some examples and try to build understanding.
134132

135133
In the next figure, we generate $n=2000$ draws from a lognormal
136134
distribution and treat these draws as our population.
@@ -180,7 +178,6 @@ Next let's look at the real data, focusing on income and wealth in the US in
180178
The following code block imports a subset of the dataset ``SCF_plus``,
181179
which is derived from the [Survey of Consumer Finances](https://en.wikipedia.org/wiki/Survey_of_Consumer_Finances) (SCF).
182180

183-
184181
```{code-cell} ipython3
185182
url = 'https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main/SCF_plus/SCF_plus_mini.csv'
186183
df = pd.read_csv(url)
@@ -237,7 +234,6 @@ for var in varlist:
237234
f_vals_nw, f_vals_ti, f_vals_li = F_vals
238235
l_vals_nw, l_vals_ti, l_vals_li = L_vals
239236
```
240-
+++
241237

242238
Now we plot Lorenz curves for net wealth, total income and labor income in the
243239
US in 2016.
@@ -265,12 +261,13 @@ plt.title("Lorenz curves of US data in 2016")
265261
plt.show()
266262
```
267263

268-
All the income and wealth measures are pre-tax.
264+
Here all the income and wealth measures are pre-tax.
265+
266+
Total income is the sum of households' all income sources, including labor income but excluding capital gains.
269267

270268
One key finding from this figure is that wealth inequality is significantly
271269
more extreme than income inequality.
272270

273-
274271
+++
275272

276273
## The Gini Coefficient
@@ -343,8 +340,6 @@ plt.title("Shaded lorenz curve of simulated data")
343340
plt.show()
344341
```
345342

346-
+++
347-
348343
### Gini Coefficient Dynamics of Simulated Data
349344

350345
Let's examine the Gini coefficient in some simulations.
@@ -365,7 +360,6 @@ This implies that the mean the distribution does not change with $\sigma$.
365360
(You can check this by looking up the expression for the mean of a lognormal
366361
distribution.)
367362

368-
369363
```{code-cell} ipython3
370364
k = 5
371365
σ_vals = np.linspace(0.2, 2.5, k)
@@ -464,8 +458,9 @@ ginis_nw, ginis_ti, ginis_li = Ginis
464458
Let's plot the Gini coefficients for net wealth, labor income and total income.
465459

466460
```{code-cell} ipython3
461+
# use an average to replace an outlier in labor income gini
467462
ginis_li_new = ginis_li
468-
ginis_li_new[5] = (ginis_li[4] + ginis_li[6]) / 2
463+
ginis_li_new[5] = (ginis_li[4] + ginis_li[6]) / 2
469464
```
470465

471466
```{code-cell} ipython3
@@ -484,21 +479,37 @@ ylabel = "gini coefficient"
484479
485480
fig, ax = plt.subplots()
486481
482+
ax.plot(years, ginis_nw, marker='o')
483+
484+
ax.set_xlabel(xlabel, fontsize=12)
485+
ax.set_ylabel(ylabel, fontsize=12)
486+
487+
488+
plt.title("Gini coefficients of US net wealth data")
489+
plt.show()
490+
```
491+
492+
```{code-cell} ipython3
493+
xlabel = "year"
494+
ylabel = "gini coefficient"
495+
496+
fig, ax = plt.subplots()
497+
487498
ax.plot(years, ginis_li_new, marker='o', label="labor income")
488-
ax.plot(years, ginis_nw, marker='o', label="net wealth")
489499
ax.plot(years, ginis_ti, marker='o', label="total income")
490500
491501
ax.set_xlabel(xlabel, fontsize=12)
492502
ax.set_ylabel(ylabel, fontsize=12)
493503
494504
ax.legend(fontsize=12)
495-
plt.title("Gini coefficients of US data")
505+
plt.title("Gini coefficients of US income data")
496506
plt.show()
497507
```
498508

499509
We see that, by this measure, inequality in wealth and income has risen
500510
substantially since 1980.
501511

512+
The wealth time series exhibits a strong U-shape.
502513

503514

504515
## Top Shares
@@ -520,11 +531,11 @@ share is defined as
520531

521532
$$
522533
T(p) = 1 - L (1-p)
523-
\approx \frac{\sum_{j\geq i} w_j}{ \sum_{j \leq n} w_j}, \quad i = [n (1-p)]
534+
\approx \frac{\sum_{j\geq i} w_j}{ \sum_{j \leq n} w_j}, \quad i = \lfloor n (1-p)\rfloor
524535
$$(topshares)
525536
526-
Here $[\cdot]$ is the greatest integer function, which rounds-off the real
527-
number inside the square bracket down to the integer less than the number.
537+
Here $\lfloor \cdot \rfloor$ is the floor function, which rounds any real
538+
number inside the square bracket down to the integer less than or equal to that number.
528539
529540
+++
530541

0 commit comments

Comments
 (0)