We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent b93c4d2 commit 9f5cc48Copy full SHA for 9f5cc48
lectures/networks.md
@@ -1408,19 +1408,21 @@ Show that $\sim$ is an [equivalence relation](https://en.wikipedia.org/wiki/Equi
1408
:class: dropdown
1409
```
1410
1411
-### Reflexivity
+**Reflexivity:**
1412
+
1413
Trivially, $u = v \Rightarrow u \rightarrow v$.
1414
1415
Thus, $u \sim u$.
1416
-### Symmetry
1417
+**Symmetry:**
1418
Suppose, $u \sim v$
1419
1420
$\Rightarrow u \rightarrow v$ and $v \rightarrow u$.
1421
1422
By definition, this implies $v \sim u$.
1423
-### Transitivity
1424
+**Transitivity:**
1425
1426
Suppose, $u \sim v$ and $v \sim w$
1427
1428
This implies, $u \rightarrow v$ and $v \rightarrow u$ and also $v \rightarrow w$ and $w \rightarrow v$.
0 commit comments