Skip to content

Commit 94a509b

Browse files
committed
complete major graphs
1 parent 5b31169 commit 94a509b

File tree

1 file changed

+150
-86
lines changed

1 file changed

+150
-86
lines changed

lectures/long_run_growth.md

Lines changed: 150 additions & 86 deletions
Original file line numberDiff line numberDiff line change
@@ -187,7 +187,7 @@ def draw_interp_plots(series, xlabel, ylabel, color_mapping, code_to_name, lw, l
187187
188188
for i, c in enumerate(cntry):
189189
190-
df_interpolated = series[c].interpolate()
190+
df_interpolated = series[c].interpolate(limit_area='inside')
191191
interpolated_data = df_interpolated[series[c].isnull()]
192192
ax.plot(interpolated_data,
193193
linestyle='--',
@@ -205,7 +205,7 @@ def draw_interp_plots(series, xlabel, ylabel, color_mapping, code_to_name, lw, l
205205
if logscale == True:
206206
ax.set_yscale('log')
207207
208-
ax.legend(loc='lower center', ncol=3, bbox_to_anchor=[0.5, -0.25])
208+
ax.legend(loc='lower center', ncol=5, bbox_to_anchor=[0.5, -0.25])
209209
ax.set_xlabel(xlabel)
210210
ax.set_ylabel(ylabel)
211211
@@ -220,7 +220,9 @@ def draw_interp_plots(series, xlabel, ylabel, color_mapping, code_to_name, lw, l
220220

221221
As you can see from this chart economic growth started in earnest in the 18th Century and continued for the next two hundred years.
222222

223-
How does this compare with other countries growth trajectories? Let's look at the United States (USA), United Kingdom (GBR), and China (CHN)
223+
How does this compare with other countries growth trajectories?
224+
225+
Let's look at the United States (USA), United Kingdom (GBR), and China (CHN)
224226

225227
```{code-cell} ipython3
226228
fig, ax = plt.subplots(dpi=300)
@@ -233,6 +235,7 @@ ax = draw_interp_plots(gdppc[cntry].loc[1200:],
233235
b_params = {'color':'grey', 'alpha': 0.2}
234236
t_params = {'fontsize': 5,
235237
'va':'center', 'ha':'center'}
238+
236239
ylim = ax.get_ylim()[1]
237240
ax.text(1320, ylim + ylim*0.2,
238241
'the Great Famine\n(1315-1321)',
@@ -299,6 +302,7 @@ b_params = {'color':'grey', 'alpha': 0.2}
299302
t_params = {'fontsize': 5,
300303
'va':'center', 'ha':'center'}
301304
ylim = ax.get_ylim()[1]
305+
302306
ax.text(1320, ylim + ylim*0.03,
303307
'the Great Famine\n(1315-1321)',
304308
color=color_mapping['GBR'], **t_params)
@@ -319,11 +323,11 @@ ax.text(1849, ylim + ylim*0.13,
319323
color=color_mapping['GBR'], **t_params)
320324
ax.axvspan(1848, 1850, color=color_mapping['GBR'], alpha=0.2)
321325
322-
ax.text(1665, ylim + ylim*0.08,
326+
ax.text(1670, ylim + ylim*0.08,
323327
'Closed-door Policy\n(1655-1684)',
324328
color=color_mapping['CHN'], **t_params)
325-
326329
ax.axvspan(1655, 1684, color=color_mapping['CHN'], alpha=0.2)
330+
327331
ax.text(1800, ylim + ylim*0.08,
328332
'Industrial Revolution\n(1740-1860)',
329333
color='grey', **t_params)
@@ -344,13 +348,129 @@ ax.text(1978, ylim + ylim*0.08,
344348
color=color_mapping['CHN'], **t_params)
345349
ax.axvspan(1978, 1979, color=color_mapping['CHN'], alpha=0.2)
346350
351+
plt.show()
352+
```
353+
354+
Looking at China GDP per capita levels from 1500 through to the 1970's showed a long period of declining GDP per capital levels from 1700's to early 20th century. (Closed Border / Inward Looking Domestic Focused Policies?)
355+
356+
```{code-cell} ipython3
357+
fig, ax = plt.subplots(dpi=300)
358+
359+
cntry = ['CHN']
360+
ax = draw_interp_plots(gdppc[cntry].loc[1600:2000],
361+
'International $\'s','Year',
362+
color_mapping, code_to_name, 2, True, ax)
363+
364+
ylim = ax.get_ylim()[1]
365+
ax.text(1670, ylim + ylim*0.05,
366+
'Closed-door Policy\n(1655-1684)',
367+
color='tab:orange', **t_params)
368+
ax.axvspan(1655, 1684, color='tab:orange', alpha=0.2)
369+
370+
ax.text(1800, ylim + ylim*0.05,
371+
'Industrial Revolution\n(1740-1860)',
372+
color='grey', **t_params)
373+
ax.axvspan(1760, 1840, color='grey', alpha=0.2)
374+
375+
ax.text(1841, ylim + ylim*0.15,
376+
'First Opium War\n(1839–1842)',
377+
color='tab:red', **t_params)
378+
ax.axvspan(1839, 1842, color='tab:red', alpha=0.2)
379+
380+
ax.text(1880, ylim + ylim*0.25,
381+
'Self-Strengthening Movement\n(1861–1895)',
382+
color='tab:blue', **t_params)
383+
ax.axvspan(1861, 1895, color='tab:blue', alpha=0.2)
384+
385+
ax.text(1942, ylim + ylim*0.05,
386+
'WW 2\n(1939-1945)',
387+
color='tab:red', **t_params)
388+
ax.axvspan(1939, 1945, color='tab:red', alpha=0.2)
389+
390+
ax.text(1949, ylim + ylim*0.15,
391+
'Founding of PRC\n(1949)',
392+
color=color_mapping['CHN'], **t_params)
393+
ax.axvspan(1948, 1950, color=color_mapping['CHN'], alpha=0.2)
394+
395+
ax.text(1960, ylim + ylim*0.25,
396+
'Great Leap Forward\n(1958-1962)',
397+
color='tab:orange', **t_params)
398+
ax.axvspan(1958, 1962, color='tab:orange', alpha=0.2)
399+
400+
ax.text(1978, ylim + ylim*0.35,
401+
'Reform and Opening-up\n(1978-1979)',
402+
color='tab:blue', **t_params)
403+
ax.axvspan(1978, 1979, color='tab:blue', alpha=0.2)
404+
405+
plt.show()
406+
```
407+
408+
```{code-cell} ipython3
409+
fig, ax = plt.subplots(dpi=300)
410+
411+
cntry = ['GBR', 'USA']
412+
ax = draw_interp_plots(gdppc[cntry].loc[1500:2000],
413+
'International $\'s','Year',
414+
color_mapping, code_to_name, 2, True, ax)
415+
416+
ylim = ax.get_ylim()[1]
417+
418+
ax.text(1651, ylim + ylim*0.1,
419+
'Navigation Act (UK)\n(1651)',
420+
color='tab:orange', **t_params)
421+
ax.axvspan(1651, 1651, color='tab:orange', alpha=0.2)
422+
423+
ax.text(1849, ylim + ylim*0.50,
424+
'Repeal of Navigation Act (UK)\n(1849)',
425+
color='tab:blue', **t_params)
426+
ax.axvspan(1848, 1850, color='tab:blue', alpha=0.2)
427+
428+
ax.text(1800, ylim + ylim*0.1,
429+
'Industrial Revolution\n(1740-1860)',
430+
color='grey', **t_params)
431+
ax.axvspan(1760, 1840, color='grey', alpha=0.2)
432+
433+
ax.text(1789, ylim + ylim*0.35,
434+
'Federation (US)\n(1789)',
435+
color=color_mapping['USA'], **t_params)
436+
ax.axvspan(1788, 1790, color=color_mapping['USA'], alpha=0.2)
437+
438+
ax.text(1863, ylim + ylim*0.8,
439+
'American Civil War (US)\n(1861-1865)',
440+
color=color_mapping['USA'], **t_params)
441+
ax.axvspan(1861, 1865, color=color_mapping['USA'], alpha=0.2)
442+
443+
ax.text(1916, ylim + ylim*0.1,
444+
'WW 1\n(1939-1945)',
445+
color='tab:red', **t_params)
446+
ax.axvspan(1914, 1918, color='tab:red', alpha=0.2)
447+
448+
449+
ax.text(1933, ylim + ylim*0.35,
450+
'the Great Depression\n(1929–1939)',
451+
color='grey', **t_params)
452+
ax.axvspan(1929, 1938.5, color='grey', alpha=0.2)
453+
454+
ax.text(1942, ylim + ylim*0.65,
455+
'WW 2\n(1939-1945)',
456+
color='tab:red', **t_params)
457+
ax.axvspan(1939, 1945, color='tab:red', alpha=0.2)
458+
459+
460+
347461
plt.show()
348462
```
349463

350464
+++ {"user_expressions": []}
351465

352-
As you can see the countries had similar GDP per capita levels with divergence starting around 1940. Australia's growth experience is both more continuous and less volatile post 1940.
466+
We can see some interesting trends:
353467

468+
- Most of the growth happened in the past 150 years after the industrial revolution.
469+
- There is a divergence in the west and east during the process of industralization (from 1820 to 1940).
470+
- The gap is repeatly closing in the modern era.
471+
- The shift in the paradigm in policy is usually intertwined with the technological and political.
472+
473+
We will look into these trends in more details
354474

355475
## The Industrialized World
356476

@@ -377,25 +497,13 @@ mystnb:
377497
caption: GDP
378498
name: gdp1
379499
---
380-
fig = plt.figure(dpi=110)
500+
fig, ax = plt.subplots(dpi=300)
381501
ax = fig.gca()
382-
cntry = ['DEU', 'SUN', 'USA', 'GBR', 'FRA', 'JPN', 'CHN']
383-
start_year, end_year = (1820,1940)
384-
line_color = ['blue', 'orange', 'green', 'red', 'yellow', 'purple', 'slategrey']
385-
gdp[cntry].loc[start_year:end_year].interpolate().plot(
386-
ax = ax,
387-
ylabel = 'International $\'s',
388-
xlabel = 'Year',
389-
color = line_color
390-
)
391-
392-
# Build Custom Legend
393-
legend_elements = []
394-
for i,c in enumerate(cntry):
395-
line = Line2D([0], [0], color=line_color[i], lw=2, label=code_to_name.loc[c]['country'])
396-
legend_elements.append(line)
397-
ax.legend(handles=legend_elements, loc='lower center', ncol=4, bbox_to_anchor=[0.5, -0.26])
398-
plt.show()
502+
cntry = ['CHN', 'SUN', 'JPN', 'GBR', 'USA']
503+
start_year, end_year = (1820, 1940)
504+
ax = draw_interp_plots(gdp[cntry].loc[start_year:end_year],
505+
'International $\'s','Year',
506+
color_mapping, code_to_name, 2, False, ax)
399507
```
400508

401509
+++ {"user_expressions": []}
@@ -409,25 +517,13 @@ mystnb:
409517
caption: GDP per Capita
410518
name: gdppc1
411519
---
412-
fig = plt.figure(dpi=110)
520+
fig, ax = plt.subplots(dpi=300)
413521
ax = fig.gca()
414-
cntry = ['DEU', 'SUN', 'USA', 'GBR', 'FRA', 'JPN', 'CHN']
415-
start_year, end_year = (1820,1940)
416-
line_color = ['blue', 'orange', 'green', 'red', 'yellow', 'purple', 'slategrey']
417-
gdppc[cntry].loc[start_year:end_year].interpolate().plot(
418-
ax = ax,
419-
ylabel = 'International $\'s',
420-
xlabel = 'Year',
421-
color = line_color
422-
)
423-
424-
# Build Custom Legend
425-
legend_elements = []
426-
for i,c in enumerate(cntry):
427-
line = Line2D([0], [0], color=line_color[i], lw=2, label=code_to_name.loc[c]['country'])
428-
legend_elements.append(line)
429-
ax.legend(handles=legend_elements, loc='lower center', ncol=4, bbox_to_anchor=[0.5, -0.25])
430-
plt.show()
522+
cntry = ['CHN', 'SUN', 'JPN', 'GBR', 'USA']
523+
start_year, end_year = (1820, 1940)
524+
ax = draw_interp_plots(gdppc[cntry].loc[start_year:end_year],
525+
'International $\'s','Year',
526+
color_mapping, code_to_name, 2, False, ax)
431527
```
432528

433529
+++ {"user_expressions": []}
@@ -443,25 +539,13 @@ mystnb:
443539
caption: GDP
444540
name: gdp2
445541
---
446-
fig = plt.figure(dpi=300)
542+
fig, ax = plt.subplots(dpi=300)
447543
ax = fig.gca()
448-
cntry = ['DEU', 'SUN', 'USA', 'GBR', 'FRA', 'JPN', 'CHN']
449-
start_year, end_year = (1970, 2018)
450-
line_color = ['blue', 'orange', 'green', 'red', 'yellow', 'purple', 'slategrey']
451-
gdp[cntry].loc[start_year:end_year].interpolate().plot(
452-
ax = ax,
453-
ylabel = 'International $\'s',
454-
xlabel = 'Year',
455-
color = line_color
456-
)
457-
458-
# Build Custom Legend
459-
legend_elements = []
460-
for i,c in enumerate(cntry):
461-
line = Line2D([0], [0], color=line_color[i], lw=2, label=code_to_name.loc[c]['country'])
462-
legend_elements.append(line)
463-
ax.legend(handles=legend_elements, loc='lower center', ncol=4, bbox_to_anchor=[0.5, -0.25])
464-
plt.show()
544+
cntry = ['CHN', 'SUN', 'JPN', 'USA']
545+
start_year, end_year = (1970, 2020)
546+
ax = draw_interp_plots(gdp[cntry].loc[start_year:end_year],
547+
'International $\'s','Year',
548+
color_mapping, code_to_name, 2, False, ax)
465549
```
466550

467551
+++ {"user_expressions": []}
@@ -475,25 +559,13 @@ mystnb:
475559
caption: GDP per Capita
476560
name: gdppc2
477561
---
478-
fig = plt.figure(dpi=300)
562+
fig, ax = plt.subplots(dpi=300)
479563
ax = fig.gca()
480-
cntry = ['DEU', 'SUN', 'USA', 'GBR', 'FRA', 'JPN', 'CHN']
481-
start_year, end_year = (1970, 2018)
482-
line_color = ['blue', 'orange', 'green', 'red', 'yellow', 'purple', 'slategrey']
483-
gdppc[cntry].loc[start_year:end_year].interpolate().plot(
484-
ax = ax,
485-
ylabel = 'International $\'s',
486-
xlabel = 'Year',
487-
color = line_color
488-
)
489-
490-
# Build Custom Legend
491-
legend_elements = []
492-
for i,c in enumerate(cntry):
493-
line = Line2D([0], [0], color=line_color[i], lw=2, label=code_to_name.loc[c]['country'])
494-
legend_elements.append(line)
495-
ax.legend(handles=legend_elements, loc='lower center', ncol=3, bbox_to_anchor=[0.5, -0.3])
496-
plt.show()
564+
cntry = ['CHN', 'SUN', 'JPN', 'USA']
565+
start_year, end_year = (1970, 2020)
566+
ax = draw_interp_plots(gdppc[cntry].loc[start_year:end_year],
567+
'International $\'s','Year',
568+
color_mapping, code_to_name, 2, False, ax)
497569
```
498570

499571
+++ {"user_expressions": []}
@@ -502,14 +574,6 @@ plt.show()
502574

503575
Here are a collection of interesting plots that could be linked to interesting stories
504576

505-
Looking at China GDP per capita levels from 1500 through to the 1970's showed a long period of declining GDP per capital levels from 1700's to early 20th century. (Closed Border / Inward Looking Domestic Focused Policies?)
506-
507-
```{code-cell} ipython3
508-
fig = plt.figure(dpi=300)
509-
gdppc['CHN'].loc[1500:1980].interpolate().plot(ax=fig.gca())
510-
plt.show()
511-
```
512-
513577
+++ {"user_expressions": []}
514578

515579
China (CHN) then followed a very similar growth story from the 1980s through to current day China.

0 commit comments

Comments
 (0)