Skip to content

Commit 9294437

Browse files
authored
Merge pull request #66 from QuantEcon/integrate-lln
[lln_clt] Integrate Comments
2 parents 6155d97 + f13fa37 commit 9294437

File tree

1 file changed

+25
-17
lines changed

1 file changed

+25
-17
lines changed

lectures/lln_clt.md

Lines changed: 25 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -140,7 +140,7 @@ $$
140140
Let $\mu$ denote the common mean of this sample:
141141

142142
$$
143-
\mu := \mathbb E X = \int_{-\infty}^{\infty} x f(dx)
143+
\mu := \mathbb E X = \int_{-\infty}^{\infty} x f(x) dx
144144
$$
145145

146146
In addition, let
@@ -228,7 +228,7 @@ def generate_histogram(X_distribution, n, m):
228228
ax.axvline(x=mu, ls="--", lw=3, label=fr"$\mu = {mu}$")
229229
230230
ax.set_xlim(min(sample_means), max(sample_means))
231-
ax.set_xlabel(r'$\bar x$', size=12)
231+
ax.set_xlabel(r'$\bar X_n$', size=12)
232232
ax.set_ylabel('density', size=12)
233233
ax.legend()
234234
plt.show()
@@ -263,14 +263,16 @@ def generate_multiple_hist(X_distribution, ns, m, log_scale=False):
263263
ax.axvline(x=mu, ls="--", lw=3, label=fr"$\mu = {mu}$")
264264
265265
ax.set_xlim(min(sample_means), max(sample_means))
266-
ax.set_xlabel(r'$\bar x$', size=12)
266+
ax.set_xlabel(r'$\bar X_n$', size=12)
267267
ax.set_ylabel('density', size=12)
268268
ax.legend()
269269
plt.show()
270270
```
271271

272272
```{code-cell} ipython3
273-
generate_multiple_hist(st.norm(loc=5, scale=2), ns=[20_000, 50_000, 100_000], m=10_000)
273+
generate_multiple_hist(st.norm(loc=5, scale=2),
274+
ns=[20_000, 50_000, 100_000],
275+
m=10_000)
274276
```
275277

276278
The histogram gradually converges to $\mu$ as the sample size n increases.
@@ -305,7 +307,7 @@ def scattered_mean(distribution, burn_in, n, jump, ax, title, color, ylog=False)
305307
ax.set_yscale("symlog")
306308
ax.set_title(title, size=10)
307309
ax.set_xlabel(r"$n$", size=12)
308-
ax.set_ylabel(r"$\bar x$", size=12)
310+
ax.set_ylabel(r"$\bar X_n$", size=12)
309311
yabs_max = max(ax.get_ylim())
310312
ax.set_ylim(ymin=-yabs_max, ymax=yabs_max)
311313
return ax
@@ -340,7 +342,7 @@ Let's go through a very simple example where LLN fails with IID violated:
340342
Assume
341343

342344
$$
343-
X_0 \sim \mathcal{N}(0,1)
345+
X_0 \sim N(0,1)
344346
$$
345347

346348
In addition, assume
@@ -352,10 +354,10 @@ $$
352354
We can then see that
353355

354356
$$
355-
\bar X_n := \frac{1}{n} \sum_{t=1}^n X_i = X_0 \sim \mathcal{N}(0,1)
357+
\bar X_n := \frac{1}{n} \sum_{t=1}^n X_i = X_0 \sim N(0,1)
356358
$$
357359

358-
Therefore, the distribution of the mean of $X$ follows $\mathcal{N}(0,1)$.
360+
Therefore, the distribution of the mean of $X$ follows $N(0,1)$.
359361

360362
However,
361363

@@ -452,8 +454,9 @@ xmin, xmax = -3 * σ, 3 * σ
452454
ax.set_xlim(xmin, xmax)
453455
ax.hist(Y, bins=60, alpha=0.4, density=True)
454456
xgrid = np.linspace(xmin, xmax, 200)
455-
ax.plot(xgrid, st.norm.pdf(xgrid, scale=σ), 'k-', lw=2, label='$N(0, \sigma^2)$')
456-
ax.set_xlabel(r"$Y$", size=12)
457+
ax.plot(xgrid, st.norm.pdf(xgrid, scale=σ),
458+
'k-', lw=2, label='$N(0, \sigma^2)$')
459+
ax.set_xlabel(r"$Y_n$", size=12)
457460
ax.set_ylabel(r"$density$", size=12)
458461
459462
ax.legend()
@@ -501,7 +504,7 @@ fig, ax = plt.subplots(figsize=(10, 6))
501504
xmin, xmax = -3 * σ, 3 * σ
502505
ax.set_xlim(xmin, xmax)
503506
ax.hist(Y, bins=60, alpha=0.4, density=True)
504-
ax.set_xlabel(r"$Y$", size=12)
507+
ax.set_xlabel(r"$Y_n$", size=12)
505508
ax.set_ylabel(r"$density$", size=12)
506509
xgrid = np.linspace(xmin, xmax, 200)
507510
ax.plot(xgrid, st.norm.pdf(xgrid, scale=σ), 'k-', lw=2, label='$N(0, \sigma^2)$')
@@ -554,15 +557,18 @@ We mentioned above that LLN can still hold sometimes when IID is violated.
554557
Let's investigate this claim further.
555558
556559
Assume we have a AR(1) process as below:
560+
557561
$$
558562
X_{t+1} = \alpha + \beta X_t + \sigma \epsilon _{t+1}
559563
$$
560564
565+
and
566+
561567
$$
562-
X_0 \sim \mathcal{N} \left(\frac{\alpha}{1-\beta}, \frac{\sigma^2}{1-\beta^2}\right)
568+
X_0 \sim N \left(\frac{\alpha}{1-\beta}, \frac{\sigma^2}{1-\beta^2}\right)
563569
$$
564570
565-
where $\epsilon_t \sim \mathcal{N}(0,1)$
571+
where $\epsilon_t \sim N(0,1)$
566572
567573
1. Prove this process violated the independence assumption but not the identically distributed assumption;
568574
2. Show LLN holds using simulations with $\alpha = 0.8$, $\beta = 0.2$.
@@ -592,7 +598,7 @@ $$
592598

593599
$$
594600
\begin{aligned}
595-
Var(X_t+1) &= \beta^2 Var(X_{t}) + \sigma^2\\
601+
\mathrm{Var}(X_{t+1}) &= \beta^2 \mathrm{Var}(X_{t}) + \sigma^2\\
596602
&= \frac{\beta^2\sigma^2}{1-\beta^2} + \sigma^2 \\
597603
&= \frac{\sigma^2}{1-\beta^2}
598604
\end{aligned}
@@ -607,7 +613,7 @@ This holds true for all $X_t$ and $\epsilon _{t}$ where $t = 0, ..., n$
607613
Therefore,
608614

609615
$$
610-
X_t \sim \mathcal{N} \left(\frac{\alpha}{1-\beta}, \frac{\sigma^2}{1-\beta^2}\right) \quad t = 0, ..., n
616+
X_t \sim N \left(\frac{\alpha}{1-\beta}, \frac{\sigma^2}{1-\beta^2}\right) \quad t = 0, ..., n
611617
$$
612618

613619

@@ -635,9 +641,11 @@ for t in range(n-1):
635641
ax.scatter(range(100, n), means[100:n], s=10, alpha=0.5)
636642
637643
ax.set_xlabel(r"$n$", size=12)
638-
ax.set_ylabel(r"$\bar x$", size=12)
644+
ax.set_ylabel(r"$\bar X_n$", size=12)
639645
yabs_max = max(ax.get_ylim(), key=abs)
640-
ax.axhline(y=α/(1-β), ls="--", lw=3, label=r"$\mu = \frac{\alpha}{1-\beta}$",color = 'black')
646+
ax.axhline(y=α/(1-β), ls="--", lw=3,
647+
label=r"$\mu = \frac{\alpha}{1-\beta}$",
648+
color = 'black')
641649
642650
plt.legend()
643651
plt.show()

0 commit comments

Comments
 (0)