Skip to content

Commit 8cbc157

Browse files
Apply review changes
1 parent 62ef1d2 commit 8cbc157

File tree

2 files changed

+3
-5
lines changed

2 files changed

+3
-5
lines changed

lectures/eigen_II.md

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -290,8 +290,6 @@ def check_convergence(M):
290290
# Define a list of values for n
291291
n_list = [1, 10, 100, 1000, 10000]
292292
293-
print("Frobenius norm of the difference:")
294-
295293
for n in n_list:
296294
297295
# Compute (A/r)^n
@@ -302,7 +300,7 @@ def check_convergence(M):
302300
303301
# Calculate the norm of the difference matrix
304302
diff_norm = np.linalg.norm(diff, 'fro')
305-
print(f"when n = {n}, {diff_norm:.10f}")
303+
print(f"n = {n}, error = {diff_norm:.10f}")
306304
307305
308306
A1 = np.array([[1, 2],
@@ -400,7 +398,7 @@ This can be proven using what we have learned here.
400398
With Markov model $M$ with state space $S$ and transition matrix $P$, we can write $P^t$ as
401399

402400
$$
403-
P^t=\sum_{i=1}^{n-1} \lambda_i^t v_i w_i^{\top}+1 \cdot \psi^*,
401+
P^t=\sum_{i=1}^{n-1} \lambda_i^t v_i w_i^{\top}+\mathbb{1} \psi^*,
404402
$$
405403

406404
This is proven in {cite}`sargent2023economic` and a nice discussion can be found [here](https://math.stackexchange.com/questions/2433997/can-all-matrices-be-decomposed-as-product-of-right-and-left-eigenvector).

lectures/markov_chains_II.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -230,7 +230,7 @@ Here
230230

231231
* $\{X_t\}$ is a Markov chain with stochastic matrix $P$ and initial.
232232
distribution $\psi_0$
233-
* $1 \cdot \{X_t = x\} = 1$ if $X_t = x$ and zero otherwise.
233+
* $\mathbb{1} \{X_t = x\} = 1$ if $X_t = x$ and zero otherwise.
234234

235235
The result in [theorem 4.3](llnfmc0) is sometimes called **ergodicity**.
236236

0 commit comments

Comments
 (0)