@@ -255,8 +255,6 @@ Then we can address a range of questions, such as
255255
256256We'll cover such applications below.
257257
258-
259-
260258### Defining Markov Chains
261259
262260So far we've given examples of Markov chains but now let's define them more
@@ -308,9 +306,6 @@ chain $\{X_t\}$ as follows:
308306
309307By construction, the resulting process satisfies {eq}` mpp ` .
310308
311-
312-
313-
314309## Simulation
315310
316311``` {index} single: Markov Chains; Simulation
@@ -864,10 +859,8 @@ Importantly, the result is valid for any choice of $\psi_0$.
864859
865860Notice that the theorem is related to the law of large numbers.
866861
867- TODO -- link to our undergrad lln and clt lecture
868-
869862It tells us that, in some settings, the law of large numbers sometimes holds even when the
870- sequence of random variables is not IID.
863+ sequence of random variables is [ not IID] ( iid_violation ) .
871864
872865
873866(mc_eg1-2)=
@@ -912,15 +905,15 @@ n_state = P.shape[1]
912905fig, axes = plt.subplots(nrows=1, ncols=n_state)
913906ψ_star = mc.stationary_distributions[0]
914907plt.subplots_adjust(wspace=0.35)
908+
915909for i in range(n_state):
916910 axes[i].grid()
917- axes[i].set_ylim(ψ_star[i]-0.2, ψ_star[i]+0.2)
918- axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color = 'black',
919- label = fr'$\psi^*(X={i})$')
911+ axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color = 'black',
912+ label = fr'$\psi^*({i})$')
920913 axes[i].set_xlabel('t')
921- axes[i].set_ylabel(fr'average time spent at X= {i}')
914+ axes[i].set_ylabel(f'fraction of time spent at {i}')
922915
923- # Compute the fraction of time spent, for each X=x
916+ # Compute the fraction of time spent, starting from different x_0s
924917 for x0, col in ((0, 'blue'), (1, 'green'), (2, 'red')):
925918 # Generate time series that starts at different x0
926919 X = mc.simulate(n, init=x0)
949942The diagram of the Markov chain shows that it is ** irreducible**
950943
951944``` {code-cell} ipython3
945+ :tags: [hide-input]
946+
952947dot = Digraph(comment='Graph')
953948dot.attr(rankdir='LR')
954949dot.node("0")
@@ -976,15 +971,16 @@ mc = MarkovChain(P)
976971n_state = P.shape[1]
977972fig, axes = plt.subplots(nrows=1, ncols=n_state)
978973ψ_star = mc.stationary_distributions[0]
974+
979975for i in range(n_state):
980976 axes[i].grid()
981977 axes[i].set_ylim(0.45, 0.55)
982- axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color = 'black',
983- label = fr'$\psi^*(X= {i})$')
978+ axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color = 'black',
979+ label = fr'$\psi^*({i})$')
984980 axes[i].set_xlabel('t')
985- axes[i].set_ylabel(fr'average time spent at X= {i}')
981+ axes[i].set_ylabel(f'fraction of time spent at {i}')
986982
987- # Compute the fraction of time spent, for each X= x
983+ # Compute the fraction of time spent, for each x
988984 for x0 in range(n_state):
989985 # Generate time series starting at different x_0
990986 X = mc.simulate(n, init=x0)
@@ -1078,6 +1074,7 @@ In the case of Hamilton's Markov chain, the distribution $\psi P^t$ converges to
10781074P = np.array([[0.971, 0.029, 0.000],
10791075 [0.145, 0.778, 0.077],
10801076 [0.000, 0.508, 0.492]])
1077+
10811078# Define the number of iterations
10821079n = 50
10831080n_state = P.shape[0]
@@ -1097,8 +1094,8 @@ for i in range(n):
10971094# Loop through many initial values
10981095for x0 in x0s:
10991096 x = x0
1100- X = np.zeros((n,n_state))
1101-
1097+ X = np.zeros((n, n_state))
1098+
11021099 # Obtain and plot distributions at each state
11031100 for t in range(0, n):
11041101 x = x @ P
@@ -1107,10 +1104,10 @@ for x0 in x0s:
11071104 axes[i].plot(range(0, n), X[:,i], alpha=0.3)
11081105
11091106for i in range(n_state):
1110- axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color = 'black',
1111- label = fr'$\psi^*(X= {i})$')
1107+ axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color = 'black',
1108+ label = fr'$\psi^*({i})$')
11121109 axes[i].set_xlabel('t')
1113- axes[i].set_ylabel(fr'$\psi(X= {i})$')
1110+ axes[i].set_ylabel(fr'$\psi({i})$')
11141111 axes[i].legend()
11151112
11161113plt.show()
@@ -1147,9 +1144,9 @@ for x0 in x0s:
11471144 axes[i].plot(range(20, n), X[20:,i], alpha=0.3)
11481145
11491146for i in range(n_state):
1150- axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color = 'black', label = fr'$\psi^* (X= {i})$')
1147+ axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color = 'black', label = fr'$\psi^*( {i})$')
11511148 axes[i].set_xlabel('t')
1152- axes[i].set_ylabel(fr'$\psi(X= {i})$')
1149+ axes[i].set_ylabel(fr'$\psi({i})$')
11531150 axes[i].legend()
11541151
11551152plt.show()
@@ -1295,7 +1292,7 @@ In this exercise,
12951292
129612931. show this process is asymptotically stationary and calculate the stationary distribution using simulations.
12971294
1298- 1. use simulation to show ergodicity.
1295+ 1. use simulations to demonstrate ergodicity of this process .
12991296
13001297````
13011298
@@ -1323,7 +1320,7 @@ codes_B = ( '1','2','3','4','5','6','7','8')
13231320np.linalg.matrix_power(P_B, 10)
13241321```
13251322
1326- We find rows transition matrix converge to the stationary distribution
1323+ We find that rows of the transition matrix converge to the stationary distribution
13271324
13281325``` {code-cell} ipython3
13291326mc = qe.MarkovChain(P_B)
@@ -1344,17 +1341,17 @@ ax.axhline(0, linestyle='dashed', lw=2, color = 'black', alpha=0.4)
13441341
13451342
13461343for x0 in range(8):
1347- # Calculate the average time for each worker
1344+ # Calculate the fraction of time for each worker
13481345 X_bar = (X == x0).cumsum() / (1 + np.arange(N, dtype=float))
13491346 ax.plot(X_bar - ψ_star[x0], label=f'$X = {x0+1} $')
13501347 ax.set_xlabel('t')
1351- ax.set_ylabel(fr'average time spent in a state $- \psi^* (X= x)$')
1348+ ax.set_ylabel(r'fraction of time spent in a state $- \psi^* (x)$')
13521349
13531350ax.legend()
13541351plt.show()
13551352```
13561353
1357- We can see that the time spent at each state quickly converges to the stationary distribution.
1354+ Note that the fraction of time spent at each state quickly converges to the probability assigned to that state by the stationary distribution.
13581355
13591356``` {solution-end}
13601357```
@@ -1452,10 +1449,9 @@ However, another way to verify irreducibility is by checking whether $A$ satisfi
14521449
14531450Assume A is an $n \times n$ $A$ is irreducible if and only if $\sum_{k=0}^{n-1}A^k$ is a positive matrix.
14541451
1455- (see more at \cite{zhao_power_2012} and [here](https://math.stackexchange.com/questions/3336616/how-to-prove-this-matrix-is-a-irreducible-matrix))
1452+ (see more: {cite}`zhao_power_2012` and [here](https://math.stackexchange.com/questions/3336616/how-to-prove-this-matrix-is-a-irreducible-matrix))
14561453
14571454Based on this claim, write a function to test irreducibility.
1458-
14591455```
14601456
14611457``` {solution-start} mc_ex3
0 commit comments