Skip to content

Commit 849bdec

Browse files
committed
fix_titles
1 parent c148a69 commit 849bdec

File tree

1 file changed

+57
-29
lines changed

1 file changed

+57
-29
lines changed

lectures/inequality.md

Lines changed: 57 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ households own just over 40\% of total wealth.
145145
---
146146
mystnb:
147147
figure:
148-
caption: Lorenz Curves For Simulated Data
148+
caption: Lorenz curve of simulated data
149149
name: lorenz_simulated
150150
---
151151
n = 2000
@@ -165,8 +165,6 @@ ax.hlines([0.43], [0], [0.8], alpha=0.5, colors='k', ls='--')
165165
ax.set_ylim((0, 1))
166166
ax.set_xlim((0, 1))
167167
168-
plt.title("Lorenz curve of simulated data") # TODO shift to the render
169-
170168
plt.show()
171169
```
172170

@@ -242,10 +240,10 @@ US in 2016.
242240
---
243241
mystnb:
244242
figure:
245-
caption: "US Lorenz Curves \n"
243+
caption: "2016 US Lorenz curves"
246244
name: lorenz_us
247245
image:
248-
alt: lorenz_real
246+
alt: lorenz_us
249247
classes: shadow bg-primary
250248
width: 75%
251249
---
@@ -256,8 +254,7 @@ ax.plot(f_vals_ti[-1], l_vals_ti[-1], label=f'total income')
256254
ax.plot(f_vals_li[-1], l_vals_li[-1], label=f'labor income')
257255
ax.plot(f_vals_nw[-1], f_vals_nw[-1], label=f'equality')
258256
259-
ax.legend(fontsize=12)
260-
plt.title("Lorenz curves of US data in 2016")
257+
ax.legend(fontsize=12)
261258
plt.show()
262259
```
263260

@@ -311,7 +308,7 @@ The idea is that $G=0$ indicates complete equality, while $G=1$ indicates comple
311308
---
312309
mystnb:
313310
figure:
314-
caption: "Shaded Lorenz curves (simulated data) \n"
311+
caption: "Shaded lorenz curve of simulated data"
315312
name: lorenz_gini
316313
image:
317314
alt: lorenz_gini
@@ -335,8 +332,7 @@ ax.set_ylim((0, 1))
335332
ax.set_xlim((0, 1))
336333
337334
ax.text(0.04, 0.5, r'$G = 2 \times$ shaded area', fontsize=12)
338-
339-
plt.title("Shaded lorenz curve of simulated data")
335+
340336
plt.show()
341337
```
342338

@@ -374,7 +370,7 @@ for σ in σ_vals:
374370
```
375371

376372
```{code-cell} ipython3
377-
def plot_inequality_measures(x, y, legend, xlabel, ylabel, title):
373+
def plot_inequality_measures(x, y, legend, xlabel, ylabel):
378374
379375
fig, ax = plt.subplots()
380376
ax.plot(x, y, marker='o', label=legend)
@@ -383,27 +379,25 @@ def plot_inequality_measures(x, y, legend, xlabel, ylabel, title):
383379
ax.set_ylabel(ylabel, fontsize=12)
384380
385381
ax.legend(fontsize=12)
386-
plt.title(title) # TODO shift it to the render
387382
plt.show()
388383
```
389384

390385
```{code-cell} ipython3
391386
---
392387
mystnb:
393388
figure:
394-
caption: "Lorenz curves (simulated data) \n"
395-
name: lorenz_simulated_shaded
389+
caption: "Gini coefficients of simulated data"
390+
name: gini_simulated
396391
image:
397-
alt: gini
392+
alt: gini_simulated
398393
classes: shadow bg-primary
399394
width: 75%
400395
---
401396
plot_inequality_measures(range(k),
402397
ginis,
403398
'simulated',
404399
'$\sigma$',
405-
'gini coefficients',
406-
'Gini coefficients of simulated data')
400+
'gini coefficients')
407401
```
408402

409403
The plots show that inequality rises with $\sigma$, according to the Gini
@@ -467,10 +461,10 @@ ginis_li_new[5] = (ginis_li[4] + ginis_li[6]) / 2
467461
---
468462
mystnb:
469463
figure:
470-
caption: "US Gini Coefficients \n"
471-
name: gini_us
464+
caption: "Gini coefficients of US net wealth"
465+
name: gini_wealth_us
472466
image:
473-
alt: gini_us
467+
alt: gini_wealth_us
474468
classes: shadow bg-primary
475469
width: 75%
476470
---
@@ -483,13 +477,21 @@ ax.plot(years, ginis_nw, marker='o')
483477
484478
ax.set_xlabel(xlabel, fontsize=12)
485479
ax.set_ylabel(ylabel, fontsize=12)
486-
487-
488-
plt.title("Gini coefficients of US net wealth data")
480+
489481
plt.show()
490482
```
491483

492484
```{code-cell} ipython3
485+
---
486+
mystnb:
487+
figure:
488+
caption: "Gini coefficients of US income"
489+
name: gini_income_us
490+
image:
491+
alt: gini_income_us
492+
classes: shadow bg-primary
493+
width: 75%
494+
---
493495
xlabel = "year"
494496
ylabel = "gini coefficient"
495497
@@ -501,8 +503,7 @@ ax.plot(years, ginis_ti, marker='o', label="total income")
501503
ax.set_xlabel(xlabel, fontsize=12)
502504
ax.set_ylabel(ylabel, fontsize=12)
503505
504-
ax.legend(fontsize=12)
505-
plt.title("Gini coefficients of US income data")
506+
ax.legend(fontsize=12)
506507
plt.show()
507508
```
508509

@@ -590,6 +591,16 @@ df_topshares = df5[['year', 'topshare_n_wealth', 'topshare_t_income', 'topshare_
590591
Then let's plot the top shares.
591592
592593
```{code-cell} ipython3
594+
---
595+
mystnb:
596+
figure:
597+
caption: "US top shares"
598+
name: top_shares_us
599+
image:
600+
alt: top_shares_us
601+
classes: shadow bg-primary
602+
width: 75%
603+
---
593604
xlabel = "year"
594605
ylabel = "top $10\%$ share"
595606
@@ -603,7 +614,6 @@ ax.set_xlabel(xlabel, fontsize=12)
603614
ax.set_ylabel(ylabel, fontsize=12)
604615
605616
ax.legend(fontsize=12)
606-
plt.title("Top shares of US data") # TODO shift to the render
607617
plt.show()
608618
```
609619
@@ -662,12 +672,21 @@ for σ in σ_vals:
662672
```
663673
664674
```{code-cell} ipython3
675+
---
676+
mystnb:
677+
figure:
678+
caption: "Top shares of simulated data"
679+
name: top_shares_simulated
680+
image:
681+
alt: top_shares_simulated
682+
classes: shadow bg-primary
683+
width: 75%
684+
---
665685
plot_inequality_measures(range(len(topshares)),
666686
topshares,
667687
"simulated data",
668688
"year",
669-
"top $10\%$ share",
670-
"Top $10\%$ share of simulated data")
689+
"top $10\%$ share")
671690
```
672691
673692
```{solution-end}
@@ -708,6 +727,16 @@ for f_val, l_val in zip(f_vals_nw, l_vals_nw):
708727
```
709728
710729
```{code-cell} ipython3
730+
---
731+
mystnb:
732+
figure:
733+
caption: "US top shares: approximation vs Lorenz"
734+
name: top_shares_us_al
735+
image:
736+
alt: top_shares_us_al
737+
classes: shadow bg-primary
738+
width: 75%
739+
---
711740
xlabel = "year"
712741
ylabel = "top $10\%$ share"
713742
@@ -720,7 +749,6 @@ ax.set_xlabel(xlabel, fontsize=12)
720749
ax.set_ylabel(ylabel, fontsize=12)
721750
722751
ax.legend(fontsize=12)
723-
plt.title("Top $10\%$ share of net wealth: approximation vs lorenz")
724752
plt.show()
725753
```
726754

0 commit comments

Comments
 (0)