Skip to content

Commit 7387dca

Browse files
committed
misc
1 parent 63df6f9 commit 7387dca

File tree

1 file changed

+212
-45
lines changed

1 file changed

+212
-45
lines changed

lectures/pv.md

Lines changed: 212 additions & 45 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,19 @@
1-
<!-- #region -->
1+
---
2+
jupytext:
3+
text_representation:
4+
extension: .md
5+
format_name: myst
6+
format_version: 0.13
7+
jupytext_version: 1.14.5
8+
kernelspec:
9+
display_name: Python 3 (ipykernel)
10+
language: python
11+
name: python3
12+
---
13+
214
# Present Values
315

4-
## Overview for present value calculations
16+
## Overview
517

618
This lecture describes the **present value model** that is a starting point
719
of much asset pricing theory.
@@ -14,77 +26,223 @@ Let's dive in.
1426

1527
Let
1628

17-
* $\{d_t\}_{t=0}^T $ be a sequence of dividends or ``payouts''
18-
29+
* $\{d_t\}_{t=0}^T $ be a sequence of dividends or "payouts"
1930
* $\{p_t\}_{t=0}^T $ be a sequence of prices of a claim on the continuation of
20-
the asset stream from date $t$ on, namely, $\{p_s\}_{s=t}^T $
21-
22-
* $ \delta \in (0,1) $ be a one-period ``discount rate''
23-
24-
* $p_{T+1}^*$ a terminal price of the asset at time $T+1$
31+
the asset stream from date $t$ on, namely, $\{d_s\}_{s=t}^T $
32+
* $ \delta \in (0,1) $ be a one-period "discount rate"
33+
* $p_{T+1}^*$ be a terminal price of the asset at time $T+1$
2534

2635
We assume that the dividend stream $\{d_t\}_{t=0}^T $ and the terminal price
27-
$p_{T+1}$ are both exogenous.
36+
$p_{T+1}^*$ are both exogenous.
2837

2938
Assume the sequence of asset pricing equations
3039

3140
$$
32-
p_t = d_t + \delta p_{t+1}, \quad t = 0, 1, \ldots , T
41+
p_t = d_t + \delta p_{t+1}, \quad t = 0, 1, \ldots , T
3342
$$ (eq:Euler1)
3443
44+
This is a "cost equals benefits" formula.
45+
46+
It says that the cost of buying the asset today equals the reward for holding it
47+
for one period (which is the dividend $d_t$)and then selling it, at $t+1$.
48+
49+
The future value $p_{t+1}$ is discounted using $\delta$ to shift it to a present value, so it is comparable with $d_t$ and $p_t$.
3550
3651
We want to solve for the asset price sequence $\{p_t\}_{t=0}^T $ as a function
3752
of $\{d_t\}_{t=0}^T $ and $p_{T+1}^*$.
3853
54+
In this lecture we show how this can be done using matrix algebra.
55+
56+
We will use the following imports
57+
58+
+++
59+
60+
```{code-cell} ipython3
61+
import numpy as np
62+
import matplotlib.pyplot as plt
63+
```
3964
65+
+++
4066
41-
Write the system {eq}`eq:Euler1` of $T+1$ asset pricing equations as the single matrix equation
67+
## Present value calculations
68+
69+
The equations in [](eq:Euler1) can be stacked, as in
4270
4371
$$
44-
\begin{bmatrix} 1 & -\delta & 0 & 0 & \cdots & 0 & 0 \cr
45-
0 & 1 & -\delta & 0 & \cdots & 0 & 0 \cr
46-
0 & 0 & 1 & -\delta & \cdots & 0 & 0 \cr
47-
\vdots & \vdots & \vdots & \vdots & \vdots & 0 & 0 \cr
48-
0 & 0 & 0 & 0 & \cdots & 1 & -\delta \cr
49-
0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}
50-
\begin{bmatrix} p_0 \cr p_1 \cr p_2 \cr \vdots \cr p_{T-1} \cr p_T
51-
\end{bmatrix}
52-
= \begin{bmatrix}
53-
d_0 \cr d_1 \cr d_2 \cr \vdots \cr d_{T-1} \cr d_T
54-
\end{bmatrix}
55-
+ \begin{bmatrix}
56-
0 \cr 0 \cr 0 \cr \vdots \cr 0 \cr \delta p_{T+1}^*
57-
\end{bmatrix}
72+
\begin{aligned}
73+
p_0 & = d_0 + \delta p_1 \\
74+
p_1 & = d_1 + \delta p_2 \\
75+
\vdots \\
76+
p_{T-1} & = d_{T-1} + \delta p_T \\
77+
p_T & = d_T + \delta p^*_{T+1}
78+
\end{aligned}
79+
$$ (eq:Euler_stack)
80+
81+
Write the system {eq}`eq:Euler_stack` of $T+1$ asset pricing equations as the single matrix equation
82+
83+
$$
84+
\begin{bmatrix} 1 & -\delta & 0 & 0 & \cdots & 0 & 0 \cr
85+
0 & 1 & -\delta & 0 & \cdots & 0 & 0 \cr
86+
0 & 0 & 1 & -\delta & \cdots & 0 & 0 \cr
87+
\vdots & \vdots & \vdots & \vdots & \vdots & 0 & 0 \cr
88+
0 & 0 & 0 & 0 & \cdots & 1 & -\delta \cr
89+
0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}
90+
\begin{bmatrix} p_0 \cr p_1 \cr p_2 \cr \vdots \cr p_{T-1} \cr p_T
91+
\end{bmatrix}
92+
= \begin{bmatrix}
93+
d_0 \cr d_1 \cr d_2 \cr \vdots \cr d_{T-1} \cr d_T
94+
\end{bmatrix}
95+
+ \begin{bmatrix}
96+
0 \cr 0 \cr 0 \cr \vdots \cr 0 \cr \delta p_{T+1}^*
97+
\end{bmatrix}
5898
$$ (eq:pieq)
5999
60-
Call the matrix on the left side of equation {eq}`eq:pieq` $A$.
100+
+++
61101
102+
```{exercise-start}
103+
:label: pv_ex_1
104+
```
62105
63-
It is easy to verify that the inverse of the matrix on the left side of equation
64-
{eq}`eq:pieq` is
106+
Carry out the matrix multiplication in [](eq:pieq) by hand and confirm that you
107+
recover the equations in [](eq:Euler_stack).
65108
109+
```{exercise-end}
110+
```
66111
67-
$$ A^{-1} =
68-
\begin{bmatrix}
69-
1 & \delta & \delta^2 & \cdots & \delta^{T-1} & \delta^T \cr
70-
0 & 1 & \delta & \cdots & \delta^{T-2} & \delta^{T-1} \cr
71-
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
72-
0 & 0 & 0 & \cdots & 1 & \delta \cr
73-
0 & 0 & 0 & \cdots & 0 & 1 \cr
74-
\end{bmatrix}
75-
$$ (eq:Ainv)
112+
In vector-matrix notation, we can write the system [](eq:pieq) as
113+
114+
$$
115+
A p = d + b
116+
$$ (eq:apdb)
76117
77-
By multiplying both sides of equation {eq}`eq:pieq` by the inverse of the matrix on the left side, we can calculate
118+
Here $A$ is the matrix on the left side of equation {eq}`eq:pieq`, while
78119
79120
$$
80-
\vec p \equiv \begin{bmatrix} p_0 \cr p_1 \cr p_2 \cr \vdots \cr p_{T-1} \cr p_T
81-
\end{bmatrix}
121+
p =
122+
\begin{bmatrix}
123+
p_0 \\
124+
p_1 \\
125+
\vdots \\
126+
p_T
127+
\end{bmatrix},
128+
\quad
129+
d =
130+
\begin{bmatrix}
131+
d_0 \\
132+
d_1 \\
133+
\vdots \\
134+
d_T
135+
\end{bmatrix},
136+
\quad \text{and} \quad
137+
b =
138+
\begin{bmatrix}
139+
0 \\
140+
0 \\
141+
\vdots \\
142+
p^*_{T+1}
143+
\end{bmatrix}
82144
$$
83145
84-
If we perform the indicated matrix multiplication, we shall find that
146+
The solution for prices is given by
85147
86148
$$
87-
p_t = \sum_{s=t}^T \delta^{s-t} d_s + \delta^{T+1-t} p_{T+1}^*
149+
p = A^{-1}(d + b)
150+
$$ (eq:apdb_sol)
151+
152+
153+
Here is a small example, where the dividend stream is given by
154+
155+
+++
156+
157+
```{code-cell} ipython3
158+
T = 6
159+
current_d = 1.0
160+
d = []
161+
for t in range(T+1):
162+
d.append(current_d)
163+
current_d = current_d * 1.05
164+
165+
fig, ax = plt.subplots()
166+
ax.plot(d, 'o', label='dividends')
167+
ax.legend()
168+
ax.set_xlabel('time')
169+
plt.show()
170+
```
171+
172+
We set $\delta$ and $p_{T+1}^*$ to
173+
174+
```{code-cell} ipython3
175+
δ = 0.99
176+
p_star = 10.0
177+
```
178+
179+
Let's build the matrix $A$
180+
181+
```{code-cell} ipython3
182+
A = np.zeros((T+1, T+1))
183+
for i in range(T+1):
184+
for j in range(T+1):
185+
if i == j:
186+
A[i, j] = 1
187+
if j < T:
188+
A[i, j+1] = -δ
189+
190+
```
191+
192+
Let's inspect $A$
193+
194+
```{code-cell} ipython3
195+
A
196+
```
197+
198+
Now let's solve for prices using [](eq:apdb_sol).
199+
200+
```{code-cell} ipython3
201+
b = np.zeros(T+1)
202+
b[-1] = δ * p_star
203+
p = np.linalg.solve(A, d + b)
204+
fig, ax = plt.subplots()
205+
ax.plot(p)
206+
plt.show()
207+
```
208+
209+
+++
210+
211+
212+
## Analytical Expressions
213+
214+
It can be verified that the inverse of the matrix $A$ in {eq}`eq:pieq` is
215+
216+
+++
217+
218+
$$ A^{-1} =
219+
\begin{bmatrix}
220+
1 & \delta & \delta^2 & \cdots & \delta^{T-1} & \delta^T \cr
221+
0 & 1 & \delta & \cdots & \delta^{T-2} & \delta^{T-1} \cr
222+
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
223+
0 & 0 & 0 & \cdots & 1 & \delta \cr
224+
0 & 0 & 0 & \cdots & 0 & 1 \cr
225+
\end{bmatrix}
226+
$$ (eq:Ainv)
227+
228+
229+
230+
```{exercise-start}
231+
:label: pv_ex_2
232+
```
233+
234+
Check this by showing that $A A^{-1}$ is equal to the identity matrix.
235+
236+
(By the [inverse matrix theorem](https://en.wikipedia.org/wiki/Invertible_matrix), a matrix $B$ is the inverse of $A$ whenever $A B$ is the identity.)
237+
238+
```{exercise-end}
239+
```
240+
241+
242+
If we use the expression [](eq:Ainv) in [](eq:apdb_sol) and perform the indicated matrix multiplication, we shall find that
243+
244+
$$
245+
p_t = \sum_{s=t}^T \delta^{s-t} d_s + \delta^{T+1-t} p_{T+1}^*
88246
$$ (eq:fisctheory1)
89247
90248
Pricing formula {eq}`eq:fisctheory1` asserts that two components sum to the asset price
@@ -94,6 +252,12 @@ $p_t$:
94252
95253
* a **bubble component** $\delta^{T+1-t} p_{T+1}^*$
96254
255+
The fundamental component is pinned down by the discount rate $\delta$ and the
256+
"fundaments" of the asset (in this case, the dividends).
257+
258+
The bubble component is the part of the price that is not pinned down by
259+
fundaments.
260+
97261
It is sometimes convenient to rewrite the bubble component as
98262
99263
$$
@@ -106,6 +270,7 @@ $$
106270
c \equiv \delta^{T+1}p_{T+1}^*
107271
$$
108272
273+
+++
109274
110275
## More about bubbles
111276
@@ -120,6 +285,7 @@ d_0 \cr d_1 \cr d_2 \cr \vdots \cr d_{T-1} \cr d_T
120285
\end{bmatrix}
121286
$$
122287
288+
+++
123289
124290
In this case system {eq}`eq:Euler1` of our $T+1$ asset pricing equations takes the
125291
form of the single matrix equation
@@ -157,6 +323,7 @@ $$
157323
p_t = c \delta^{-t}
158324
$$ (eq:bubble)
159325
326+
+++
160327
161328
## Gross rate of return
162329
@@ -174,7 +341,7 @@ $$
174341
R_t = \delta^{-1} > 1 .
175342
$$
176343
177-
344+
+++
178345
179346
<!-- #endregion -->
180347
@@ -188,4 +355,4 @@ We'll try various settings for $\vec d, p_{T+1}^*$:
188355
189356
* $p_{T+1}^* = 0, d_t = 0$ to get a worthless stock
190357
191-
* $p_{T+1}^* = c \delta^{-(T+1)}, d_t = 0$ to get a bubble stock
358+
* $p_{T+1}^* = c \delta^{-(T+1)}, d_t = 0$ to get a bubble stock

0 commit comments

Comments
 (0)