1- <!-- #region -->
1+ ---
2+ jupytext :
3+ text_representation :
4+ extension : .md
5+ format_name : myst
6+ format_version : 0.13
7+ jupytext_version : 1.14.5
8+ kernelspec :
9+ display_name : Python 3 (ipykernel)
10+ language : python
11+ name : python3
12+ ---
13+
214# Present Values
315
4- ## Overview for present value calculations
16+ ## Overview
517
618This lecture describes the ** present value model** that is a starting point
719of much asset pricing theory.
@@ -14,77 +26,223 @@ Let's dive in.
1426
1527Let
1628
17- * $\{ d_t\} _ {t=0}^T $ be a sequence of dividends or ``payouts''
18-
29+ * $\{ d_t\} _ {t=0}^T $ be a sequence of dividends or "payouts"
1930 * $\{ p_t\} _ {t=0}^T $ be a sequence of prices of a claim on the continuation of
20- the asset stream from date $t$ on, namely, $\{ p_s\} _ {s=t}^T $
21-
22- * $ \delta \in (0,1) $ be a one-period ``discount rate''
23-
24- * $p_ {T+1}^* $ a terminal price of the asset at time $T+1$
31+ the asset stream from date $t$ on, namely, $\{ d_s\} _ {s=t}^T $
32+ * $ \delta \in (0,1) $ be a one-period "discount rate"
33+ * $p_ {T+1}^* $ be a terminal price of the asset at time $T+1$
2534
2635We assume that the dividend stream $\{ d_t\} _ {t=0}^T $ and the terminal price
27- $p_ {T+1}$ are both exogenous.
36+ $p_ {T+1}^ * $ are both exogenous.
2837
2938Assume the sequence of asset pricing equations
3039
3140$$
32- p_t = d_t + \delta p_{t+1}, \quad t = 0, 1, \ldots , T
41+ p_t = d_t + \delta p_{t+1}, \quad t = 0, 1, \ldots , T
3342$$ (eq:Euler1)
3443
44+ This is a "cost equals benefits" formula.
45+
46+ It says that the cost of buying the asset today equals the reward for holding it
47+ for one period (which is the dividend $d_t$)and then selling it, at $t+1$.
48+
49+ The future value $p_{t+1}$ is discounted using $\delta$ to shift it to a present value, so it is comparable with $d_t$ and $p_t$.
3550
3651We want to solve for the asset price sequence $\{p_t\}_{t=0}^T $ as a function
3752of $\{d_t\}_{t=0}^T $ and $p_{T+1}^*$.
3853
54+ In this lecture we show how this can be done using matrix algebra.
55+
56+ We will use the following imports
57+
58+ +++
59+
60+ ```{code-cell} ipython3
61+ import numpy as np
62+ import matplotlib.pyplot as plt
63+ ```
3964
65+ +++
4066
41- Write the system {eq}`eq:Euler1` of $T+1$ asset pricing equations as the single matrix equation
67+ ## Present value calculations
68+
69+ The equations in [](eq:Euler1) can be stacked, as in
4270
4371$$
44- \begin{bmatrix} 1 & -\delta & 0 & 0 & \cdots & 0 & 0 \cr
45- 0 & 1 & -\delta & 0 & \cdots & 0 & 0 \cr
46- 0 & 0 & 1 & -\delta & \cdots & 0 & 0 \cr
47- \vdots & \vdots & \vdots & \vdots & \vdots & 0 & 0 \cr
48- 0 & 0 & 0 & 0 & \cdots & 1 & -\delta \cr
49- 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}
50- \begin{bmatrix} p_0 \cr p_1 \cr p_2 \cr \vdots \cr p_ {T-1} \cr p_T
51- \end{bmatrix}
52- = \begin{bmatrix}
53- d_0 \cr d_1 \cr d_2 \cr \vdots \cr d_ {T-1} \cr d_T
54- \end{bmatrix}
55- + \begin{bmatrix}
56- 0 \cr 0 \cr 0 \cr \vdots \cr 0 \cr \delta p_ {T+1}^*
57- \end{bmatrix}
72+ \begin{aligned}
73+ p_0 & = d_0 + \delta p_1 \\
74+ p_1 & = d_1 + \delta p_2 \\
75+ \vdots \\
76+ p_ {T-1} & = d_ {T-1} + \delta p_T \\
77+ p_T & = d_T + \delta p^* _ {T+1}
78+ \end{aligned}
79+ $$ (eq:Euler_stack)
80+
81+ Write the system {eq}`eq:Euler_stack` of $T+1$ asset pricing equations as the single matrix equation
82+
83+ $$
84+ \begin{bmatrix} 1 & -\delta & 0 & 0 & \cdots & 0 & 0 \cr
85+ 0 & 1 & -\delta & 0 & \cdots & 0 & 0 \cr
86+ 0 & 0 & 1 & -\delta & \cdots & 0 & 0 \cr
87+ \vdots & \vdots & \vdots & \vdots & \vdots & 0 & 0 \cr
88+ 0 & 0 & 0 & 0 & \cdots & 1 & -\delta \cr
89+ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}
90+ \begin{bmatrix} p_0 \cr p_1 \cr p_2 \cr \vdots \cr p_{T-1} \cr p_T
91+ \end{bmatrix}
92+ = \begin{bmatrix}
93+ d_0 \cr d_1 \cr d_2 \cr \vdots \cr d_{T-1} \cr d_T
94+ \end{bmatrix}
95+ + \begin{bmatrix}
96+ 0 \cr 0 \cr 0 \cr \vdots \cr 0 \cr \delta p_{T+1}^*
97+ \end{bmatrix}
5898$$ (eq:pieq)
5999
60- Call the matrix on the left side of equation {eq}`eq:pieq` $A$.
100+ +++
61101
102+ ```{exercise-start}
103+ :label: pv_ex_1
104+ ```
62105
63- It is easy to verify that the inverse of the matrix on the left side of equation
64- {eq}`eq:pieq` is
106+ Carry out the matrix multiplication in [](eq:pieq) by hand and confirm that you
107+ recover the equations in [](eq:Euler_stack).
65108
109+ ```{exercise-end}
110+ ```
66111
67- $$ A^{-1} =
68- \begin{bmatrix}
69- 1 & \delta & \delta^2 & \cdots & \delta^{T-1} & \delta^T \cr
70- 0 & 1 & \delta & \cdots & \delta^{T-2} & \delta^{T-1} \cr
71- \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
72- 0 & 0 & 0 & \cdots & 1 & \delta \cr
73- 0 & 0 & 0 & \cdots & 0 & 1 \cr
74- \end{bmatrix}
75- $$ (eq:Ainv)
112+ In vector-matrix notation, we can write the system [](eq:pieq) as
113+
114+ $$
115+ A p = d + b
116+ $$ (eq:apdb)
76117
77- By multiplying both sides of equation {eq}`eq:pieq` by the inverse of the matrix on the left side, we can calculate
118+ Here $A$ is the matrix on the left side of equation {eq}`eq:pieq`, while
78119
79120$$
80- \vec p \equiv \begin{bmatrix} p_0 \cr p_1 \cr p_2 \cr \vdots \cr p_ {T-1} \cr p_T
81- \end{bmatrix}
121+ p =
122+ \begin{bmatrix}
123+ p_0 \\
124+ p_1 \\
125+ \vdots \\
126+ p_T
127+ \end{bmatrix},
128+ \quad
129+ d =
130+ \begin{bmatrix}
131+ d_0 \\
132+ d_1 \\
133+ \vdots \\
134+ d_T
135+ \end{bmatrix},
136+ \quad \text{and} \quad
137+ b =
138+ \begin{bmatrix}
139+ 0 \\
140+ 0 \\
141+ \vdots \\
142+ p^*_{T+1}
143+ \end{bmatrix}
82144$$
83145
84- If we perform the indicated matrix multiplication, we shall find that
146+ The solution for prices is given by
85147
86148$$
87- p_t = \sum_ {s=t}^T \delta^{s-t} d_s + \delta^{T+1-t} p_ {T+1}^*
149+ p = A^{-1}(d + b)
150+ $$ (eq:apdb_sol)
151+
152+
153+ Here is a small example, where the dividend stream is given by
154+
155+ +++
156+
157+ ```{code-cell} ipython3
158+ T = 6
159+ current_d = 1.0
160+ d = []
161+ for t in range(T+1):
162+ d.append(current_d)
163+ current_d = current_d * 1.05
164+
165+ fig, ax = plt.subplots()
166+ ax.plot(d, 'o', label='dividends')
167+ ax.legend()
168+ ax.set_xlabel('time')
169+ plt.show()
170+ ```
171+
172+ We set $\delta$ and $p_{T+1}^*$ to
173+
174+ ```{code-cell} ipython3
175+ δ = 0.99
176+ p_star = 10.0
177+ ```
178+
179+ Let's build the matrix $A$
180+
181+ ```{code-cell} ipython3
182+ A = np.zeros((T+1, T+1))
183+ for i in range(T+1):
184+ for j in range(T+1):
185+ if i == j:
186+ A[i, j] = 1
187+ if j < T:
188+ A[i, j+1] = -δ
189+
190+ ```
191+
192+ Let's inspect $A$
193+
194+ ```{code-cell} ipython3
195+ A
196+ ```
197+
198+ Now let's solve for prices using [](eq:apdb_sol).
199+
200+ ```{code-cell} ipython3
201+ b = np.zeros(T+1)
202+ b[-1] = δ * p_star
203+ p = np.linalg.solve(A, d + b)
204+ fig, ax = plt.subplots()
205+ ax.plot(p)
206+ plt.show()
207+ ```
208+
209+ +++
210+
211+
212+ ## Analytical Expressions
213+
214+ It can be verified that the inverse of the matrix $A$ in {eq}`eq:pieq` is
215+
216+ +++
217+
218+ $$ A^{-1} =
219+ \begin{bmatrix}
220+ 1 & \delta & \delta^2 & \cdots & \delta^{T-1} & \delta^T \cr
221+ 0 & 1 & \delta & \cdots & \delta^{T-2} & \delta^{T-1} \cr
222+ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
223+ 0 & 0 & 0 & \cdots & 1 & \delta \cr
224+ 0 & 0 & 0 & \cdots & 0 & 1 \cr
225+ \end{bmatrix}
226+ $$ (eq:Ainv)
227+
228+
229+
230+ ```{exercise-start}
231+ :label: pv_ex_2
232+ ```
233+
234+ Check this by showing that $A A^{-1}$ is equal to the identity matrix.
235+
236+ (By the [inverse matrix theorem](https://en.wikipedia.org/wiki/Invertible_matrix), a matrix $B$ is the inverse of $A$ whenever $A B$ is the identity.)
237+
238+ ```{exercise-end}
239+ ```
240+
241+
242+ If we use the expression [](eq:Ainv) in [](eq:apdb_sol) and perform the indicated matrix multiplication, we shall find that
243+
244+ $$
245+ p_t = \sum_{s=t}^T \delta^{s-t} d_s + \delta^{T+1-t} p_{T+1}^*
88246$$ (eq:fisctheory1)
89247
90248Pricing formula {eq}`eq:fisctheory1` asserts that two components sum to the asset price
@@ -94,6 +252,12 @@ $p_t$:
94252
95253 * a **bubble component** $\delta^{T+1-t} p_{T+1}^*$
96254
255+ The fundamental component is pinned down by the discount rate $\delta$ and the
256+ "fundaments" of the asset (in this case, the dividends).
257+
258+ The bubble component is the part of the price that is not pinned down by
259+ fundaments.
260+
97261It is sometimes convenient to rewrite the bubble component as
98262
99263$$
106270c \equiv \delta^{T+1}p_ {T+1}^*
107271$$
108272
273+ +++
109274
110275## More about bubbles
111276
@@ -120,6 +285,7 @@ d_0 \cr d_1 \cr d_2 \cr \vdots \cr d_{T-1} \cr d_T
120285\end{bmatrix}
121286$$
122287
288+ +++
123289
124290In this case system {eq}`eq:Euler1` of our $T+1$ asset pricing equations takes the
125291form of the single matrix equation
157323p_t = c \delta^{-t}
158324$$ (eq:bubble)
159325
326+ +++
160327
161328## Gross rate of return
162329
174341R_t = \delta^{-1} > 1 .
175342$$
176343
177-
344+ +++
178345
179346<!-- #endregion -->
180347
@@ -188,4 +355,4 @@ We'll try various settings for $\vec d, p_{T+1}^*$:
188355
189356 * $p_{T+1}^* = 0, d_t = 0$ to get a worthless stock
190357
191- * $p_{T+1}^* = c \delta^{-(T+1)}, d_t = 0$ to get a bubble stock
358+ * $p_{T+1}^* = c \delta^{-(T+1)}, d_t = 0$ to get a bubble stock
0 commit comments