@@ -585,31 +585,37 @@ That allows us to assess how important it is to understand whether the sudden pe
585585unanticipated, as in experiment 2.
586586
587587``` {code-cell} ipython3
588- T_seq = range(T+2)
589-
590- # plot both regimes
591- fig, ax = plt.subplots(2, 3, figsize=[10,5], dpi=200)
588+ # compare foreseen vs unforeseen shock
589+ fig, ax = plt.subplots(2, 3, figsize=[12,6], dpi=200)
592590ax[0,0].plot(T_seq[:-1], μ_seq_3)
593- ax[0,1].plot(T_seq, π_seq_3)
594- ax[0,2].plot(T_seq, m_seq_3_regime1 - p_seq_3_regime1)
595- ax[1,0].plot(T_seq, m_seq_3_regime1, label='Smooth $m_{T_1}$')
596- ax[1,0].plot(T_seq, m_seq_3_regime2, label='Jumpy $m_{T_1}$')
597- ax[1,1].plot(T_seq, p_seq_3_regime1, label='Smooth $m_{T_1}$')
598- ax[1,1].plot(T_seq, p_seq_3_regime2, label='Jumpy $m_{T_1}$')
591+
592+ ax[0,1].plot(T_seq, π_seq_3, label='Unforeseen')
593+ ax[0,1].plot(T_seq, π_seq_1, label='Foreseen', color='tab:green')
594+
595+ ax[0,2].plot(T_seq, m_seq_3_regime1 - p_seq_3_regime1, label='Unforeseen')
596+ ax[0,2].plot(T_seq, m_seq_1 - p_seq_1, label='Foreseen', color='tab:green')
597+
598+ ax[1,0].plot(T_seq, m_seq_3_regime1, label=r'Unforseen (Insist on $m_{T_1}$)')
599+ ax[1,0].plot(T_seq, m_seq_3_regime2, label=r'Unforseen (Reset $m_{T_1}$)')
600+ ax[1,0].plot(T_seq, m_seq_1, label='Foreseen shock')
601+
602+ ax[1,1].plot(T_seq, p_seq_3_regime1, label=r'Unforseen (Insist on $m_{T_1}$)')
603+ ax[1,1].plot(T_seq, p_seq_3_regime2, label=r'Unforseen (Reset $m_{T_1}$)')
604+ ax[1,1].plot(T_seq, p_seq_1, label='Foreseen')
599605
600606ax[0,0].set_ylabel(r'$\mu$')
601607ax[0,0].set_xlabel(r'$t$')
602608ax[0,1].set_ylabel(r'$\pi$')
603609ax[0,1].set_xlabel(r'$t$')
604610ax[0,2].set_xlabel(r'$t$')
605- ax[0,2].set_ylabel(r'$m - p$')
611+ ax[0,2].set_ylabel(r'$m - p} $')
606612ax[1,0].set_ylabel(r'$m$')
607613ax[1,0].set_xlabel(r'$t$')
608614ax[1,1].set_ylabel(r'$p$')
609615ax[1,1].set_xlabel(r'$t$')
610616ax[1,2].set_axis_off()
611617
612- for i,j in zip([1,1], [0,1]):
618+ for i,j in zip([0,0, 1,1], [1,2, 0,1]):
613619 ax[i,j].legend()
614620
615621plt.tight_layout()
0 commit comments