@@ -34,7 +34,7 @@ from matplotlib.patches import Polygon
3434```
3535
3636The following figure illustrates a network of linkages among 15 sectors
37- obtained from the US Bureau of Economic Analysis’s 2019 Input-Output Accounts
37+ obtained from the US Bureau of Economic Analysis’s 2021 Input-Output Accounts
3838Data.
3939
4040``` {code-cell} ipython3
@@ -88,6 +88,10 @@ tags: [hide-input]
8888---
8989centrality = qbn_io.eigenvector_centrality(A)
9090
91+ # Remove self-loops
92+ for i in range(A.shape[0]):
93+ A[i][i] = 0
94+
9195fig, ax = plt.subplots(figsize=(8, 10))
9296plt.axis("off")
9397color_list = qbn_io.colorise_weights(centrality,beta=False)
@@ -237,11 +241,11 @@ More generally, constraints on production are
237241$$
238242\begin{aligned}
239243(I - A) x & \geq d \cr
240- a_0' x & \leq x_0
244+ a_0^\top x & \leq x_0
241245\end{aligned}
242246$$ (eq:inout_1)
243247
244- where $A$ is the $n \times n$ matrix with typical element $a_{ij}$ and $a_0' = \begin{bmatrix} a_{01} & \cdots & a_{02} \end{bmatrix}$.
248+ where $A$ is the $n \times n$ matrix with typical element $a_{ij}$ and $a_0^\top = \begin{bmatrix} a_{01} & \cdots & a_{02} \end{bmatrix}$.
245249
246250
247251
322326The second equation of {eq}`eq:inout_1` can be written
323327
324328$$
325- a_0' x = x_0
329+ a_0^\top x = x_0
326330$$
327331
328332or
329333
330334$$
331- A_0' d = x_0
335+ A_0^\top d = x_0
332336$$ (eq:inout_frontier)
333337
334338where
335339
336340$$
337- A_0' = a_0' (I - A)^{-1}
341+ A_0^\top = a_0^\top (I - A)^{-1}
338342$$
339343
340344 For $i \in \{1, \ldots , n\}$, the $i$th component of $A_0$ is the amount of labor that is required to produce one unit of final output of good $i$.
@@ -346,12 +350,12 @@ Consider the example in {eq}`eq:inout_ex`.
346350Suppose we are now given
347351
348352$$
349- a_0' = \begin{bmatrix}
353+ a_0^\top = \begin{bmatrix}
3503544 & 100
351355\end{bmatrix}
352356$$
353357
354- Then we can find $A_0' $ by
358+ Then we can find $A_0^\top $ by
355359
356360```{code-cell} ipython3
357361a0 = np.array([4, 100])
383387More generally,
384388
385389$$
386- p = A' p + a_0 w
390+ p = A^\top p + a_0 w
387391$$
388392
389393which states that the price of each final good equals the total cost
390- of production, which consists of costs of intermediate inputs $A' p$
394+ of production, which consists of costs of intermediate inputs $A^\top p$
391395plus costs of labor $a_0 w$.
392396
393397This equation can be written as
394398
395399$$
396- (I - A' ) p = a_0 w
400+ (I - A^\top ) p = a_0 w
397401$$ (eq:inout_price)
398402
399403which implies
400404
401405$$
402- p = (I - A' )^{-1} a_0 w
406+ p = (I - A^\top )^{-1} a_0 w
403407$$
404408
405409Notice how {eq}`eq:inout_price` with {eq}`eq:inout_1` forms a
@@ -414,7 +418,7 @@ This connection surfaces again in a classic linear program and its dual.
414418A **primal** problem is
415419
416420$$
417- \min_ {x} w a_0' x
421+ \min_ {x} w a_0^\top x
418422$$
419423
420424subject to
427431The associated **dual** problem is
428432
429433$$
430- \max_ {p} p' d
434+ \max_ {p} p^\top d
431435$$
432436
433437subject to
434438
435439$$
436- (I -A)' p \leq a_0 w
440+ (I -A)^\top p \leq a_0 w
437441$$
438442
439443The primal problem chooses a feasible production plan to minimize costs for delivering a pre-assigned vector of final goods consumption $d$.
@@ -444,7 +448,7 @@ By the [strong duality theorem](https://en.wikipedia.org/wiki/Dual_linear_progra
444448optimal value of the primal and dual problems coincide:
445449
446450$$
447- w a_0' x^* = p^* d
451+ w a_0^\top x^* = p^* d
448452$$
449453
450454where $^*$'s denote optimal choices for the primal and dual problems.
569573\mu_j = \sum_ {j=1}^n l_ {ij}
570574$$
571575
572- This can be written as $\mu' = \mathbf {1}' L$ or
576+ This can be written as $\mu^\top = \mathbb {1}^\top L$ or
573577
574578$$
575- \mu' = \mathbf {1}' (I-A)^{-1}
579+ \mu^\top = \mathbb {1}^\top (I-A)^{-1}
576580$$
577581
582+ Please note that here we use $\mathbb{1}$ to represent a vector of ones.
583+
578584High ranking sectors within this measure are important buyers of intermediate goods.
579585
580586A demand shock in such sectors will cause a large impact on the whole production network.
0 commit comments