@@ -4,14 +4,13 @@ jupytext:
44 extension : .md
55 format_name : myst
66 format_version : 0.13
7- jupytext_version : 1.14.5
7+ jupytext_version : 1.14.4
88kernelspec :
99 display_name : Python 3 (ipykernel)
1010 language : python
1111 name : python3
1212---
1313
14-
1514# Input-Output Models
1615
1716## Overview
@@ -32,7 +31,6 @@ import networkx as nx
3231import matplotlib.pyplot as plt
3332```
3433
35-
3634The following figure illustrates a network of linkages between 15 sectors
3735obtained from the US Bureau of Economic Analysis’s 2019 Input-Output Accounts
3836Data.
@@ -82,11 +80,11 @@ A, F = build_coefficient_matrices(Z, X)
8280
8381``` {code-cell} ipython3
8482---
83+ :tags: [hide-cell]
8584mystnb:
8685 figure:
87- caption: " US 15 sector production network"
86+ caption: US 15 sector production network
8887 name: us_15sectors
89- :tags: [hide-cell]
9088---
9189centrality = qbn_io.eigenvector_centrality(A)
9290
@@ -103,7 +101,6 @@ qbn_plt.plot_graph(A, X, ax, codes,
103101plt.show()
104102```
105103
106-
107104| Label| Sector | Label| Sector | Label| Sector |
108105| :---:| :-------------:| :---:| :--------------:| :---:| :-------------------------:|
109106| ag | Agriculture | wh | Wholesale | pr | Professional Services |
@@ -129,7 +126,7 @@ In this lecture, we first introduce the standard input-ouput model and approach
129126(TODO add link to lpp lecture)
130127
131128
132- ## Input Output Analysis
129+ ## Input output analysis
133130
134131Let
135132
150147 x_j = \min_{i \in \{0, \ldots , n \}} \left( \frac{z_{ij}}{a_{ij}}\right)
151148$$
152149
153- ### Two Goods
150+ ### Two goods
154151
155152To illustrate ideas, we begin by setting $n =2$.
156153
@@ -319,7 +316,7 @@ x #solving for gross ouput
319316
320317+++ {"user_expressions": []}
321318
322- ## Production Possibility Frontier
319+ ## Production possibility frontier
323320
324321The second equation of {eq}`eq:inout_1` can be written
325322
@@ -407,7 +404,7 @@ that are transposes of one another.
407404This connection surfaces again in a classic linear program and its dual.
408405
409406
410- ## Linear Programs
407+ ## Linear programs
411408
412409A **primal** problem is
413410
494491L = \sum_ {i=0}^{\infty} A^i
495492$$
496493
497- ### Demand Shocks
494+ ### Demand shocks
498495
499496Consider the impact of a demand shock $\Delta d$ which shifts demand from $d_0$ to $d_1 = d_0 + \Delta d$.
500497
518515E = \{ (i,j) \in V \times V : a_ {ij}>0\}
519516$$
520517
521- In {numref }`us_15sectors` weights are indicated by the widths of the arrows, which are proportional to the corresponding input-output coefficients.
518+ In {ref }`us_15sectors` weights are indicated by the widths of the arrows, which are proportional to the corresponding input-output coefficients.
522519
523520We can now use centrality measures to rank sectors and discuss their importance relative to the other sectors.
524521
525- ### Eigenvector Centrality
522+ ### Eigenvector centrality
526523
527524Eigenvector centrality of a node $i$ is measured by
528525$$
531528\end{aligned}
532529$$
533530
534- We plot a bar graph of hub-based eigenvector centrality for the sectors represented in {numref }`us_15sectors`.
531+ We plot a bar graph of hub-based eigenvector centrality for the sectors represented in {ref }`us_15sectors`.
535532
536533```{code-cell} ipython3
537534:tags: [hide-cell]
@@ -542,14 +539,13 @@ ax.set_ylabel("eigenvector centrality", fontsize=12)
542539plt.show()
543540```
544541
545-
546542A higher measure indicates higher importance as a supplier.
547543
548544As a result demand shocks in most sectors will significantly impact activity in sectors with high eigenvector centrality.
549545
550546The above figure indicates that manufacturing is the most dominant sector in the US economy.
551547
552- ### Output Multipliers
548+ ### Output multipliers
553549
554550Another way to rank sectors in input output networks is via outuput multipliers.
555551
@@ -574,11 +570,12 @@ High ranking sectors within this measure are important buyers of intermediate go
574570A demand shock in such sectors will cause a large impact on the whole production network.
575571
576572The following figure displays the output multipliers for the sectors represented
577- in {numref }`us_15sectors`.
573+ in {ref }`us_15sectors`.
578574
579575```{code-cell} ipython3
580576:tags: [hide-cell]
581577
578+ A, F = build_coefficient_matrices(Z, X)
582579omult = qbn_io.katz_centrality(A, authority=True)
583580
584581fig, ax = plt.subplots()
@@ -588,7 +585,6 @@ ax.set_ylabel("Output multipliers", fontsize=12)
588585plt.show()
589586```
590587
591-
592588We observe that manufacturing and agriculture are highest ranking sectors.
593589
594590
0 commit comments