Skip to content

Commit 5041e47

Browse files
committed
Fix steady_x eq
1 parent 00d48d5 commit 5041e47

File tree

1 file changed

+23
-11
lines changed

1 file changed

+23
-11
lines changed

lectures/lake_model.md

Lines changed: 23 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.14.4
7+
jupytext_version: 1.14.5
88
kernelspec:
99
display_name: Python 3 (ipykernel)
1010
language: python
@@ -40,10 +40,13 @@ The "flows" between the two lakes are as follows:
4040
3. employed workers separate from their jobs at rate $\alpha$.
4141
4. unemployed workers find jobs at rate $\lambda$.
4242

43+
```{code-cell} ipython3
44+
from graphviz import Digraph
45+
```
46+
4347
The below graph illustrates the lake model.
4448

45-
```{code-cell}ipython3
46-
from graphviz import Digraph
49+
```{code-cell} ipython3
4750
# Create Digraph object
4851
G = Digraph()
4952
G.attr(rankdir='LR')
@@ -116,8 +119,6 @@ Let us first plot the time series of unemployment $u_t$, employment $e_t$, and l
116119

117120
We will use the following imports.
118121

119-
+++
120-
121122
```{code-cell} ipython3
122123
import numpy as np
123124
import matplotlib.pyplot as plt
@@ -216,7 +217,11 @@ Not surprisingly, we observe that labor force $n_t$ increases at a constant rate
216217
This fact conincides with the intuition that the inflow and outflow of labor market system is determined by constant exit rate and enter rate of labor market.
217218

218219
In detail, let $\mathbb{1}=[1, 1]^\top$ be a vector of ones.
219-
Observe that $$n_{t+1} = u_{t+1} + e_{t+1} = \mathbb{1}^\top x_t = \mathbb{1}^\top A x_t = (1 + b - d) (u_t + e_t) = (1 + b - d) n_t.$$
220+
Observe that
221+
222+
$$
223+
n_{t+1} = u_{t+1} + e_{t+1} = \mathbb{1}^\top x_t = \mathbb{1}^\top A x_t = (1 + b - d) (u_t + e_t) = (1 + b - d) n_t
224+
$$
220225

221226
Moreover, the times series of unemployment and employment seems to grow at some constant rate in the long run.
222227

@@ -228,15 +233,21 @@ Since $A$ is a nonnegative and irreducible matrix, we can use the Perron-Frobeni
228233

229234
- The spectral radius $r(A)$ is an eigenvalue of $A$, where
230235

231-
$$r(A) := \max\{|\lambda|: \lambda \text{ is an eigenvalue of } A \} $$
236+
$$
237+
r(A) := \max\{|\lambda|: \lambda \text{ is an eigenvalue of } A \}
238+
$$
232239

233240
- there exist unique and everywhere positive right eigenvector $\phi$ (column vector) and left eigenvector $\psi$ (row vector):
234241

235-
$$A \phi = r(A) \phi, \quad \psi A = r(A) \psi$$
242+
$$
243+
A \phi = r(A) \phi, \quad \psi A = r(A) \psi
244+
$$
236245

237246
- if further $A$ is positive, then with $<\psi, \phi> = \psi \phi=1$ we have
238247

239-
$$r(A)^{-t} A^t \to \phi \psi . $$
248+
$$
249+
r(A)^{-t} A^t \to \phi \psi
250+
$$
240251

241252
The last statement implies that the magnitude of $A^t$ is identical to the magnitude of $r(A)^t$ in the long run, where $r(A)$ can be considered as the dominated eigenvalue in this lecture.
242253

@@ -258,7 +269,8 @@ We can thus find a unique positive vector $\bar{x} = \begin{bmatrix} \bar{u} \\
258269
such that $A\bar{x} = r(A)\bar{x}$ and $\begin{bmatrix} 1 & 1 \end{bmatrix} \bar{x} = 1$:
259270

260271
```{math}
261-
:label: steady_x -->
272+
:label: steady_x
273+
262274
\begin{aligned}
263275
\bar{u} & = \frac{b + \alpha (1-d)}{b + (\alpha+\lambda)(1-d)} \\
264276
\bar{e} & = \frac{\lambda(1-d)}{b + (\alpha+\lambda)(1-d)}
@@ -471,7 +483,7 @@ In this case, $c_1 v_1$ must be a normalized eigenvector, so $c_1 v_1 = \bar{x}$
471483

472484
## Exercise
473485

474-
+++
486+
475487

476488
:label: lake_model_ex1
477489

0 commit comments

Comments
 (0)