@@ -385,16 +385,14 @@ We'll make $W_0$ big - positive to indicate a one-time windfall, and negative to
385385
386386```{code-cell} ipython3
387387# Windfall W_0 = 2.5
388- y_seq_pos = np.concatenate(
389- [np.ones(21), np.array([2.5]), np.ones(44)])
388+ y_seq_pos = np.concatenate([np.ones(21), np.array([2.5]), np.ones(24), np.zeros(20)])
390389
391390plot_cs(cs_model, a0, y_seq_pos)
392391```
393392
394393```{code-cell} ipython3
395394# Disaster W_0 = -2.5
396- y_seq_neg = np.concatenate(
397- [np.ones(21), np.array([-2.5]), np.ones(44)])
395+ y_seq_neg = np.concatenate([np.ones(21), np.array([-2.5]), np.ones(24), np.zeros(20)])
398396
399397plot_cs(cs_model, a0, y_seq_neg)
400398```
@@ -408,15 +406,15 @@ Again we can study positive and negative cases
408406```{code-cell} ipython3
409407# Positive permanent income change W = 0.5 when t >= 21
410408y_seq_pos = np.concatenate(
411- [np.ones(21), np.repeat( 1.5, 45 )])
409+ [np.ones(21), 1.5*np.ones(25), np.zeros(20 )])
412410
413411plot_cs(cs_model, a0, y_seq_pos)
414412```
415413
416414```{code-cell} ipython3
417415# Negative permanent income change W = -0.5 when t >= 21
418416y_seq_neg = np.concatenate(
419- [np.ones(21), np.repeat(0.5, 45 )])
417+ [np.ones(21), .5* np.ones(25), np.zeros(20 )])
420418
421419plot_cs(cs_model, a0, y_seq_neg)
422420```
0 commit comments