|
| 1 | +--- |
| 2 | +jupytext: |
| 3 | + text_representation: |
| 4 | + extension: .md |
| 5 | + format_name: myst |
| 6 | + format_version: 0.13 |
| 7 | + jupytext_version: 1.14.4 |
| 8 | +kernelspec: |
| 9 | + display_name: Python 3 (ipykernel) |
| 10 | + language: python |
| 11 | + name: python3 |
| 12 | +--- |
| 13 | + |
| 14 | +(input_output)= |
| 15 | + |
| 16 | +In this lecture, we will need the following library. |
| 17 | + |
| 18 | ++++ |
| 19 | + |
| 20 | +# Input-Output Models |
| 21 | + |
| 22 | +## Overview |
| 23 | + |
| 24 | +We adopt notation in chapters 8 and 9 of the classic book {cite}`DoSSo`. |
| 25 | + |
| 26 | +We let |
| 27 | + |
| 28 | + * $X_0$ be the amount of a single exogenous input to production. We'll call this input labor |
| 29 | + * $X_j, j = 1,\ldots n$ be the gross output of final good $j$ |
| 30 | + * $C_j, j = 1,\ldots n$ be the net output of final good $j$ that is available for final consumption |
| 31 | + * $x_{ij} $ be the quantity of good $i$ allocated to be an input to producing good $j$ for $i=1, \ldots n$, $j = 1, \ldots n$ |
| 32 | + * $x_{0j}$ be the quantity of labor allocated to produce one unit of good $j$. |
| 33 | + * $a_{ij}$ be the number of units of good $i$ required to produce one unit of good $j$, $i=0, \ldots, n, j= 1, \ldots n$. |
| 34 | + * $w >0$ be the exogenous wage of labor, denominated in dollars per unit of labor |
| 35 | + * $p$ be an $n \times 1$ vector of prices of produced goods $i = 1, \ldots , n$. |
| 36 | + |
| 37 | + |
| 38 | + |
| 39 | +The production function for goods $j \in \{1, \ldots , n\}$ is the **Leontief** function |
| 40 | + |
| 41 | +$$ |
| 42 | +X_j = \min_{i \in \{0, \ldots , n \}} \left( \frac{x_{ij}}{a_{ij}}\right) |
| 43 | +$$ |
| 44 | + |
| 45 | + |
| 46 | +To illustrate ideas, we'll begin by setting $n =2$. |
| 47 | + |
| 48 | +Feasible allocations must satisfy |
| 49 | + |
| 50 | +$$ |
| 51 | +\begin{aligned} |
| 52 | +(1 - a_{11}) X_1 - a_{12} X_2 & \geq C_1 \cr |
| 53 | +-a_{21} X_1 + (1 - a_{22}) X_2 & \geq C_2 \cr |
| 54 | +a_{01} X_1 + a_{02} X_2 & \leq X_0 |
| 55 | +\end{aligned} |
| 56 | +$$ |
| 57 | + |
| 58 | +or more generally |
| 59 | + |
| 60 | +$$ |
| 61 | +\begin{aligned} |
| 62 | +(I - a) X & \geq C \cr |
| 63 | +a_0^\top X & \leq X_0 |
| 64 | +\end{aligned} |
| 65 | +$$ (eq:inout_1) |
| 66 | +
|
| 67 | +where $a$ is the $n \times n$ matrix with typical element $a_{ij}$ and $a_0^\top = \begin{bmatrix} a_{01} & \cdots & a_{0n} \end{bmatrix}$. |
| 68 | +
|
| 69 | +
|
| 70 | +
|
| 71 | +If we solve the first block of equations of {eq}`eq:inout_1` for gross output $X$ we get |
| 72 | +
|
| 73 | +$$ |
| 74 | +X = (I -a )^{-1} C \equiv A C |
| 75 | +$$ (eq:inout_2) |
| 76 | +
|
| 77 | +where $A = (I-a)^{-1}$. |
| 78 | +
|
| 79 | +The coefficient $A_{ij} $ is the amount of good $i$ that is required as an intermediate input to produce one unit of final output $j$. |
| 80 | +
|
| 81 | +We assume the **Hawkins-Simon condition** |
| 82 | +
|
| 83 | +$$ |
| 84 | +\det (I - a) > 0 |
| 85 | +$$ |
| 86 | +
|
| 87 | +to assure that the solution $X$ of {eq}`eq:inout_2` is a positive vector. |
| 88 | +
|
| 89 | +
|
| 90 | +## Production Possibility Frontier |
| 91 | +
|
| 92 | +The second equation of {eq}`eq:inout_1` can be written |
| 93 | +
|
| 94 | +$$ |
| 95 | +a_0^\top X = X_0 |
| 96 | +$$ |
| 97 | +
|
| 98 | +or |
| 99 | +
|
| 100 | +$$ |
| 101 | +A_0^\top C = X_0 |
| 102 | +$$ (eq:inout_frontier) |
| 103 | +
|
| 104 | +where |
| 105 | +
|
| 106 | +$$ |
| 107 | +A_0^\top = a_0^\top (I - a)^{-1} |
| 108 | +$$ |
| 109 | +
|
| 110 | +The $i$th Component $A_0$ is the amount of labor that is required to produce one unit of final output of good $i$ for $i \in \{1, \ldots , n\}$. |
| 111 | +
|
| 112 | +Equation {eq}`eq:inout_frontier` sweeps out a **production possibility frontier** of final consumption bundles $C$ that can be produced with exogenous labor input $X_0$. |
| 113 | +
|
| 114 | +
|
| 115 | +## Prices |
| 116 | +
|
| 117 | +{cite}`DoSSo` argue that relative prices of the $n$ produced goods must satisfy |
| 118 | +
|
| 119 | +$$ |
| 120 | +p = a^\top p + a_0 w |
| 121 | +$$ |
| 122 | +
|
| 123 | +which states that the price of each final good equals the total cost |
| 124 | +of production, which consists of costs of intermediate inputs $a^\top p$ |
| 125 | +plus costs of labor $a_0 w$. |
| 126 | +
|
| 127 | +This equation can be written as |
| 128 | +
|
| 129 | +$$ |
| 130 | +(I - a^\top) p = a_0 w |
| 131 | +$$ (eq:inout_price) |
| 132 | +
|
| 133 | +which implies |
| 134 | +
|
| 135 | +$$ |
| 136 | +p = (I - a^\top)^{-1} a_0 w |
| 137 | +$$ |
| 138 | +
|
| 139 | +Notice how {eq}`eq:inout_price` with {eq}`eq:inout_1` form a |
| 140 | +**conjugate pair** through the appearance of operators |
| 141 | +that are transposes of one another. |
| 142 | +
|
| 143 | +This connection surfaces again in a classic linear program and its dual. |
| 144 | +
|
| 145 | +
|
| 146 | +## Linear Programs |
| 147 | +
|
| 148 | +A **primal** problem is |
| 149 | +
|
| 150 | +$$ |
| 151 | +\min_{X} w a_0 ^\top X |
| 152 | +$$ |
| 153 | +
|
| 154 | +subject to |
| 155 | +
|
| 156 | +$$ |
| 157 | +(I -a ) X \geq C |
| 158 | +$$ |
| 159 | +
|
| 160 | +
|
| 161 | +The associated **dual** problem is |
| 162 | +
|
| 163 | +$$ |
| 164 | +\max_{p} p^\top C |
| 165 | +$$ |
| 166 | +
|
| 167 | +subject to |
| 168 | +
|
| 169 | +$$ |
| 170 | +(I -a)^\top p \leq a_0 w |
| 171 | +$$ |
| 172 | +
|
| 173 | +The primal problem chooses a feasible production plan to minimize costs for delivering a pre-assigned vector of final goods consumption $C$. |
| 174 | +
|
| 175 | +The dual problem chooses prices to maxmize the value of a pre-assigned vector of final goods $C$ subject to prices covering costs of production. |
| 176 | +
|
| 177 | +Under sufficient conditions discussed XXXX, optimal value of the primal and dual problems coincide: |
| 178 | +
|
| 179 | +$$ |
| 180 | +w a_0^\top X^* = p^* C |
| 181 | +$$ |
| 182 | +
|
| 183 | +where $^*$'s denote optimal choices for the primal and dual problems. |
| 184 | +
|
| 185 | +
|
| 186 | +
|
| 187 | +
|
| 188 | +
|
| 189 | +
|
| 190 | ++++ |
| 191 | +
|
| 192 | +
|
| 193 | +## Exercise |
| 194 | +
|
| 195 | +{cite}`DoSSo`, chapter 9, carries along an example with the following |
| 196 | +parameter settings: |
| 197 | +
|
| 198 | +
|
| 199 | +
|
| 200 | +$$ |
| 201 | +a = \begin{bmatrix} .1 & 1.46 \cr |
| 202 | + .16 & .17 \end{bmatrix} |
| 203 | +$$ |
| 204 | +
|
| 205 | +$$ |
| 206 | +a_0 = \begin{bmatrix} .04 & .33 \end{bmatrix} |
| 207 | +$$ |
| 208 | +
|
| 209 | +$$ |
| 210 | +C = \begin{bmatrix} 50 \cr 60 \end{bmatrix} |
| 211 | +$$ |
| 212 | +
|
| 213 | +$$ |
| 214 | +X_0 = \begin{bmatrix} 250 \cr 120 \end{bmatrix} |
| 215 | +$$ |
| 216 | +
|
| 217 | +$$ |
| 218 | +X = 50 |
| 219 | +$$ |
| 220 | +
|
| 221 | +
|
| 222 | +```{code-cell} ipython3 |
| 223 | +
|
| 224 | +``` |
| 225 | +
|
| 226 | +```{code-cell} ipython3 |
| 227 | +
|
| 228 | +``` |
0 commit comments